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PREFACE 

The quantum theory of fields has, in recent years, led to important the- 

oretical progress in elementary particle physics and also in statistical 

mechanics. At the same time, current developments in general relativity 

and quantum field theory are becoming more and more interconnected. A 

knowledge of the geometrical structures so essential for a discussion 

of the classical theory of general relativity is also becoming increa- 

singly useful in the study of other classical and quantum field theories. 

Non-linear differential equations play a central role in almost 

all interesting physical theories. Integrable theories and the methods 

to solve them are of conceptual and practical importance. Common featu- 

res to these theories are the existence of an infinite number of conser- 

ved quantities, an associated linear problem and B~cklund transforma- 

tions. A large class of integrable theories can be solved by the (clas- 

sical and quantum) inverse method. The underlying (dynamical) symmetries 

allowing this exact solvability have associated bilinear (Yang-Baxter) 

and Kac-Moody algebras. In addition, a number of analogies and links 

between different integrable non-linear field equations have been found, 

e.g. between self-dual Yang-Mills fields, static monopoles, non-linear 

sigma models and the gravitational field with two Killing vectors. 

These links have been very useful in allowing methods developed for one 

problem to be applied directly to another. 

A seminar series "S~minaires sur les ~quations non-lin~aires en 

th~orie des champs" intended to follow current developments in mathema- 

tical physics, and particularly in the above-mentioned domains, was 

started in the Parisian region in October 1983. The seminars take place 

alternatively at DAPHE - Observatoire de Meudon - and LPTHE - Universit~ 

Pierre et Marie Curie (Paris VI) - and they encourage regular meetings 

between theoretical physicists of different disciplines and a number of 

mathematicians. Participants come from Paris VI and VII, IHP, ENS, 

Coll~ge de France, CPT-Palaiseau, GAR-Meudon, IHES, LPTHE-Orsay and 

CPT-Marseille. The present volume "Non-Linear Equations in Classical 

and Quantum Field Theory" accounts for the first twenty-two lectures 

delivered up to October 1984 in this series. 

It is a pleasure to thank all the speakers for accepting our invi- 

tations and for their interesting accounts, whether they be of a review 

nature or an exposition of recent work. We thank all the participants 

for their interest and for their stimulating discussions. We are espe- 

cially indebted to H~ctor J. de Vega at LPTHE - Paris VI, jointly 



IV 

responsible with us for these seminars, for his efficient collaboration 

which has made this series possible. We also thank M. Dubois Violette 

at Orsay, J.L. Richard at Marseille, and B. Carter and B. Whiting at 

Meudon for their cooperation and encouragement. We acknowledge Mrs. C. 

Rosolen and Mrs. D. Lopes for their practical assistance in the organi- 

sation and for their typing of part of these proceedings. 

These seminars are financially supported by the CNRS. We particu- 

larly thank the Scientific Direction "Math~matiques-Physique de Base" 

which has made this series possible. We extend our appreciation to 

Springer-Verlag for their cooperation and e~ficiency in publishing 

these proceedings and hope that the possibility of making our seminars 

more widely available in this way will continue in the future. 

Meudon, November 1984 

Norma SANCHEZ. 

Organising Commitee 

H.J. de Vega 

M. Dubois Violette 

J.L. Richard 

N. S~nchez 

(LPTHE - Paris VI) 

(LPTHE - Orsay) 

(CPT - Marseille) 

(DAPHE - Meudon) 
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A NEW CLASS OF UNITARIZABLE HIGHEST WEIGHT REPRESENTATIONS 

OF INFINITE DIMENSIONAL LIE ALGEBRAS. 

H.P. Jakobsen 

Mathematics lnstitute 

Universitetsparken 5 

DK - 21OO Copenhagen 

Denmark. 

V.G. Kac 

Department of Mathematics 

M.I.T. 

Cambridge, Mass 02139 

U.S.A. 

O. Introduction. 

The representation theory of infinite-dimensional Lie algebras has emerged in the 

past few years as a field that has remarkable applications to many areas of mathematics 

and mathematical physics. All these applications show that the following two assump- 

tions about the representation in question are fundamental : 

I) unitarizability ; 

2) existence of a highest weight vector. 

In more detail, let ~ be a complex (possibly infinite-dimensional) Lie algebra, 

let ~(~) denote its universal enveloping algebra, let ~ be a subalgebra of 

and let ~0 be an antilinear anti-involution of ~(i.e. tO, [ ~i~] -- [o~.~j o~,X] 

and ~O,~) ---~(~,~)~uch that 

Let ~ , p--~ {~ be a 1-dimensional representation of ~. A representation W ; 

~, ~ ~ W  ~ is called a ~h~t w~g~ ~p~.~..u°. with highest weight~ 
if there exists a vector ~7"Ae~ with the following properties : 



(0 .3 )  "~'{ bl ~ = ~i ( ~ ) lJ"~ for any ~ * p 

(Of course, (0.2) is satisfied automatically if the representation 71" is irreducible) 

A Hermitian form H on V such that 

( 0 .4 )  H ( "I/'A , ~I/" A ) -'-- "I 2 

is called cov~b~llu~J~n~t (it is determined uniquely by (0.4) and (0.5)). It is easyto 

show that, under some natural assumptions, for any highest weight ~ : p ~ 

there exists a unique highest weight representation with a non-degenerate contrava- 

riant Hermitian form. The non-trivial problem is whether this form is positive definite; 

if this is the case, the representation ~T is called u~JuczabZe. 

For example, let ~be the infinite-dimensional Heisenberg algebra, i.e. a Lie 

algebra with a basis ~ p,',~ (~ El) and c,with commutation relations : 

[~,/ ~[] = C. and all the other brackets zero. Put p ---- ~c + ~- ~f and let 

~:p __~ ~ be defined by ~ ~ c~ = G. e and ~ (~') --- C) 

Then any representation of ~ with highest weight ~ is irreducible and equivalent to 

the canonical commutation relations representation L(a) ~ ~£ ~( --~ ~ 

~. _~ 0.,9_ C--~ O.. ) Let ~ be an antilinear anti-involution of 

defined by bO(P£) =~" ! £~J(~) = ~{ J £~(c)=c • Then L(a) is unitarizable if 

and only if a is a positive real number. 

The unitarizable highest weight representations of finite-dimensional semisimple Lie 

algebras have been classified quite recently, and the answer is highly non-trivial 

[ i ] ,  [3]. 

The present paper grew out from an attempt to solve the analogous problem for affine 

Kac-Moody algebras. Recall that, given a simple finite-dimensional Lie algebra~, the 
I 

associated affine Kac-Moody algebra is 

~= ~ [~ , -~ -~ j  ®~ ~. * ¢~ , 

with the following commutation relations : 

(o ~ ) [ £ % ~ ,  ~ U q  : ~ ' % [ ~ .  ~] ..,~.. ~ ( ~ 6 ~  ; [ ~ ,~  ] = o 

Here a,b e~, (a,b)is the Killing form one, and ~m ,~¢Z. Let ~beaBorelsubalgebraof 

and ~3 a compact antilinear anti-involution (i.e. the real subalgebra{~6 o~.X.=- 

is the compact form of ~) such that (0.i) holds. The conventional choice of the 

"Borel subalgebra" ~ of ~is 

b= 



Let ~ be the compact antilinear anti-involution ofl, i.e. ~-~®(~4. + ~cJ = 

~ CO (fcJt~C and let p =~. Then the affine algebra ~admits a remarkable 

family of unitarizable highest weight representations, called integrable highest 

weight representations. An exposition of the theory of these representations along 

with some of its beautiful applicatio~may be found in the book [4~. 

On the other hand, a simple computation shows that for p=(conventionalb)and any other 

choice of L~ there is no unitarizable highest weight modules except the trivial one, 

in sharp contrast to the finite-dimensional theory. 

However,again in contrast to the finite-dimensional theory, an affine Lie algebra has 

several conjugacy classes of Borel subalgebras, and the next natural step is to try 

"non-conventional" Borel subalgebras. 

As a result, we found the following unitarizable highest weight representations of 

the Lie algebra ~ ~ S ~2 ~ (~ ~ ~i ~'~J ) = ~ ~ ~i ~-~ ~ 5~z ~) 

(the central charge, i.e. the eigenvalue of c, is trivial) : 

eet~=~i~k~ZJ be the spa~e of p?lonomials in indeterminates ~K • Put 
~k O O ~ 

Let ~ =If o -~C~) ) I O. C t ) ,  ~ t ~ )  e ~ I t  I -'~---" } ~. " l 
and let O be an antilinear anti-involution of the Lie algebra ~I~ t~L~, ~-<J} 
defined by 

- - f  _ -  . (0.8) cO. ~ = C_ a ) cO. ~ = .~ J 

LeG ~ be a finite measure on the circle S 4, not concentrated in a finite number of 

points ~ put ~= _ ~ Zk~/~ (e.g. ~ = ~1o if~is the Lebesgue measure). Then the 

map 5 4 

defines a unitarizable irreducible representation T/'~ of the Lie algebra ~I 

- ~[~4jJ on the space V, the polynomial I being an eigenvector for 6, if~is positive 

The rea l  form of is the rea l  

algebra su(l,l) ~ of polynomial maps of the circle into su(l,l). Thus, we have a 

unitary representation of su(l,l) on the space V, and this construction can easily 
4 

be generalized to the case of su(n,l) ~ . Moreover, we show that these representa- 

tions together with integrable highest weight representations and representations 

"concentrated" in a finite number of points, are the only unitarizable highest weight 

representations of all affine Kac-Moody algebras. 

Finally, in a similar fashion, we can construct unitarizable highest weight represen- 

tations of the Lie algebra su(n,l) X, where X is a set with a finite measure. The 

corresponding fo~ula for the Hermitian form is identical to that for the truncated 



correlation function in quantum field theory. 

We will discuss elsewhere the question of integrability of these representations to 

the corresponding group SU(n,I) X. 

i. Generalities. 

Let ~ be a Lie algebra with an antilinear anti-involution ~ ; then ~ extends 

uniquely to an antilinear anti-involution of the Universal enveloping algebra ~(~). 

Let p be a subalgebra of ~satisfying (0.I). Choose a subspacen =~such that 

~= p ~. Then we have the decompostition into a direct sum of vector spaces : 

~ {~)= ~(~) O ~ )  • Denote by ~ the projection on the second summand. 

Let ~ : ~.~ (L be a 1-dimensional representation of h and extend it to the whole 

IJL~). Put ~ (p) = ~ ~ ~ ~ I ~(~ ) : O ~ . Define a sesquilinear form H on~(~) by 

It is straightforward that 

(1.2) H ( ~ ' ~ ,  v )  = I - ~ ( ~ ,  ( . ~ . ~ ' ) Y ; a n d  ' 

H = o . 

In order to have the Hermitian property of H ( l~e 

we need to assume 

(1.4) X ( ~ (~.I) ----- ~ ( ~ (~.L~) ; for 

We p u t  

(1.5) M(A) = ~LI~) / ~(I~; %C ~ (0) 

and define a representation ~ of ~on M(~) via left multiplication. The represen- 

tation (M(~), ~A) is called a (generalized)U VQJtr~ mo~. We denote by ~x & M (A) 

the image of I. Then (0.2) and (0.3) are satisfied, so that M(I) is a highest weight 

representation with highest weight ~ . Furthermore, since, by (1.3)~ the kernel of 

the Hermitian form H contains ~I~) , we obtain a contravariant Hermitian form 

on M(~), also denoted by H. By uniqueness of the contravariant form, H is indepen- 

dent of the choice of~ (satisfying (1.4)). 

Let l(1) be the Kernel of H on M(A) and put [(~) = M(~)/I(A). Then ~A induces a 

highest weight representation |TA of ~ on the space L (A) and H induces a non- 



degenerate contravariant Hermitian form on L(~), also denoted by H. It is clear that 

conversely, if L(1) is a highest weight representation with a non-degenerate Hermi- 

tian form, it is obtained from the Verma module M(~) as above. 

Thus, we arrive at the following 

Lemma I . I .  Let ~ b e  a Lie algebra wi th  an a n t i l i n e a r  a n t i - i n v o l u t i o n  ~ ,  and l e t  

bc a subalgebra of ~ s a t i s f y i n g  (0. I) .  Let ~ be a l-dimenSional represen ta t ion  of 

~. Suppose t ha t  we can choose a subspace H ~ ~, such t h a t  8, = ~ @~, and such t h ~  

the corresponding projection ~: ~ L~) -~ ~ {p ) satisfie4 (1.4). Then there 
exiStS a unique h ighes t  weight  represen ta t ion  ~ wi th  h ighes t  weight  ~ of ~ on 

a vec tor  space L(~) wi th  a non-degenerate contravariant  Hermitian form. I"I 

We s h a l l  s o m e t i m e s  w r i t e  Mp,~(A), Lp,~ (~), ?I%;p and HV i n s t e a d  o f  M(A), L(A), 
[[~ , and H, in order to emphasize the dependence on ~ and O2. 

R~m~J~k : Let ~, p, ~ , ~ and ~ be as in Lenuma ~.~, and let ~ = p be a subalgebra 

such ~hat ~ +cO ~ =~and such that thereexlsts asubspaceU~_pwith p = ~ and 

(1 .6)  % I~, = O • 

Let ~ X ~b " Then the highest weight representations ~[l ; ~ and ~7~ 

are equivalent. Indeed, since ~l (p) ~ ~(~), there exists a surjective S-map 

~ ~j~ [~ )-b~,~ (A).Using (1.6), one easily checks that Ker ~ is contained 

in the Kernel of H . It follows that ~ induces an equivalence of representations 

Lb, Lp,  . B 

Ex/Imp~e : The canonical commutation relations representation L(a) of the infinite- 

dimensional Heisenberg algebra (see the introduction) is a Verma module. Choose 

~ = ~. ~ ~ ; then condition (1.4) holds whenever a e ~ . Hence L(a) carries 

a Hermitian form whenever a E ~(it is clear that this condition is also necessary). 

The representation L(a) is irreducible iff a # 0. Thus L(a) is an (irreducible) hi- 

ghest weight representation with a contravariant Hermitian form if a e~ \ ~o~.['] 

2. Involutions and Borel subalgebras. 

For basic definitions and facts of the theory of Kac-Moody algebras we refer to the 

book [4]. 

Let ~= ~' (A) be a Kac-Moody algebra associated to the generalized Cartan matrix A. 

This is a Lie algebra with Chev~4 generators e c~ ~ , o~c v ( ~ = As .... , .~ ) 

satisfying certain well-known relations. Let ~ be the set of roots of ~ and let 

_- ~D ~ 

be the ;toot Space decomposition of ~. 



We call a subset ~+of /% a Set of p0sLt~ve roots if the following three p~operties 

hold : 

{2.2) if ~ ~ A , then either =~ or -~ lie in /k+ / 

( 2 . 3 )  if o~ e /%+, then --~ ~ A+ • 

s£ 
Example .. Let  ]7"  be ~ h e  s e t  o f  r o o t s  c o r r e s p o n d i n g  to  the  g e n e r a t o r s  e.: ( ~ . , , . . , )  

~c' ~'~÷={(~,~IZ,... } and c~& ~ ~ ~ . Then is the conventional set of 

positive roots (see [4] ), which we call the standard s e t  of pos i t i ve  roots.  I"I 

Given a set of positive roots L~+ , one associates to it the Borel subalgebra 

~= ~ ~ A+ Q~O~ • The Borel subalgebra associated to ~+E is denoted by 

A subalgebra ~ of ~containing ~ is called a p~abog6c ~ub~geb~. 

An antilinear anti-involution GO of ~is called c0vusiste~t if 

It is clear that, replacing ~ by ~e 

the following form : 

oO .e,~ 

and ;~ by ~.4~ , one can bring ~ to 

An important example is the eompac£ an2iZineaA a~tg-invoZaZgon ~0¢ defined by : 

Ud e" = 
c "  ~ C (Z=~, . . . .  , ~) 

Note that if ¢4) is a consistent antilinear anti-involution and ~ is a parabolic sub- 

algebra of ~, then condition (0.i) holds~ One can show that conversely, if (0.i) holds 

for some ~ and CO , then LU is conjugate to a consistent antilinear anti-involu- 

tion (cf. [5]). 

Let W be the Weyl group of the Kac-Moody algebra ~ ; for a real root oC~ let 

~ ~ ~A~ denotes the reflection with respect to 

We start with the classification of sets of positive roots in the finite-dimensional 

case. 

Lemma 2. I. I f  ~ i s  a f i n i t e  root  system, then a s e t  of pos i t i ve  roots ~ ,  i s  

~-conjugate to A ~  ~ . 

= A~ ~ Proof. If ~s~ /%~ , then /~+ + and there is nothing to prove. Otherwise, 
sf. $E 

the re  e x i s t s  o~ ~ ~ $ ~  /%÷,and I c a . )  n -  a +  I < I a .  n - I. After a 
finite number of such steps we get /k+ _.- Li~ ~ [-I 

By Lemma 2.1, a Borel subalgebra of a finite-dimensional simple Lie algebra ~ is con- 

jugate to k ~ 



The situation is different for infinite-dlmensional Kac-Moody algebras. For example, 

let ~ be an affine Kac-Moody algebra associated to ~ ("non-twisted" case) ; then the 

subalgebrad 6 defined by (0~7) is b st. On the other ~hand, putting ~= h ~  , where 

is a Cartan subalgebra and ~ a maximal nilpotent subalgebra of ~ we have another 

Borel subalgebra of ~, which is not conjugate to 6 st, namely the na~tt~ Borel subal- 

gebra : 

A "twisted" affine algebra is a fixed point set in ~ of a non-trivial symmetry of 

Chevalley generators, and we take ~n&t to be the intersection with this set of the 

natural Borel subalgebra of ~. 

To show that ~st and ~n&t are ~ not conjugate, note that (similar fact holds for any 

Kac-Moody algebra) : 

on the other hand one has 

I, ~'~ = ( ¢ ~  ÷ ¢ . c ~  ~ I~ ) ~, [_ 6~'~, 6 ''~ ] 

Now we turn to the classification, up to W-equivalence, of the subsets of positive 

roots of an affine root system ; this is equivalent to the classification of Borel 

subalgebras of an affine Kac-Moody algebra o ~ up tO conjugation. ~T £~ 

Let A be the root system of an dEfine Kac-Moody algebra ~and let = [~i~....,~ 

be the standard set of simple roots (the ordering ~f simple roots is that of [4]). 

L k = T  

Then /~ is the root system of the "underlying" finite-dimensional simple Lie alge- 

bra Q. Let ~ be the unique indivisible imaginary root from A~- ~ . Recall that 

the sets 

and the 

Example. Let 

(2.4) A= I 

and ~+~ can be easily reconstructed in terms of the finite root system 

root ~ [4, Chapter 6] : 

be an affine Lie algebra associated to ~. Then : 

Oiven a root space decomposition ~, .= ( have , 

For a "twisted" affine Lie algebra, the set of roots is a subset of (A U ~ A) ()Qs 

invariant under the shift by k~ (k = 2 or 3), where A is defined by (2.4) (see 

[4, Chapter 6] for details). 

Let ~+ be a set of positive roots of an affine root system A . Replacing ~+ 

by -/~+ if necessary, we can assume that ~ ~ /~q- . A root ~ ~_ A+ is called 



bad if all the roots of the form ~+~ ~ (~Z) lie in ~ ; otherwise, a root 

~ ~ ÷ is called ~0o~ It is clear that ~ is a good root for any ~+ and that 

all the roots from ~ are good. 

Lem~a 2.2. Let ~ be a s e t  of p o s i t i v e  roots  of an a f f i n e  root  system ~ , such 

t ~  ~ e A÷.  

(a) I f  ~ ~ ~ +  iS good, then there  e~is t s  ~ ~ ~ +  such t ha t  a root  

÷ ~  ~ l i e s  in  ~ + i f f  ~ ~ - s 

(b) I f  ~ j ~ ~ e Z~+ and =< iS bad, then ~ + ~  iS bad. 

(e) I f  ~,  ~ , ~ -  ~ e ~ ,  and ~ and ~ are good, then ~ - ~  iS  good, 

(d) I f  ~ , ~  , ~ 4  ~ ~ A +  and ~ and ~ are good, then ~ + ~  i s  good. 

Proof. (a) and (b) are obvious and (c) follows from (b). If ~K and ~ are good 

roots for ~+ , but all the roots of the form~+~+ ~ (~£ ~) lie in ~+ , then 

all the roots of the form-~-~ lie in - ~÷ . But o~ ~ ~ ~ 6 -- /~+ 

for some s since ~ is good, hence all the roots of the form-~e~ lie in - ~+ 

and all the roots of the form ~ +n% lie in ~+ . This contradiction proves (d).[-] 

Let X be a subset of ~ . We associate to X a subset of positive roots /~ of A 

as follows. In the non-twisted case we put : 

(2.6) 

In the twisted case, we put ~ = (~, ~ k ~+)n~' where ~+ is the set defined 

as in (2.6). 

Proposi t ion 2.1. I f  n i s  an a f f i n e  root  system, then every s e t  of p o s i t i v e  roots  i s  

~ ,  ~ ~ ~ ] -con jug~e  to one of the s ~  ~ 
Proof. Let ~+ be a subset of positive roots of A ; we can assume that ~ e A+ 

leither is a good root of  x=zxn   
i x , i / 

Ax+ = A~ ~ f~+. 
By l e n a  2 .2 ,  f o r  each ~ ~ ~ , e i t h e r  ~ or - ~ i s  a good r o o t  o f  ~ +  . I t  

s~ 
follows that I AX* N -A+ I < =~ • Applying the same argument as that in the 

proof of Lemma 2. i, we may assume that A~+ ~ /~;~ . Applying again this argument 

we may assume that ~ . But then, by Lermna 2.2, Z~+ is the set of 

good roots of /~, . It follows that A+ g~q- ~ - O 

3. A list of unitarizable highest weight representations. 

Let ~ be an arbitrary Kac-Moody algebra, let b be the standard Borel subalgebra, of 

~, let ~O~ OO C and let ~ : ~--~ ~ be a 1-dimensional representation of 



defined by 

Then the representation TFA/b, uJ c is unitarizable ([4, Chapter llJ). These 

representations are called Z~teg~ble highest weight representations. In particular, 

if @is finite-dimensional, thesse representations are precisely all finite-dimen- 

sional irreducible representations of ;. 

Furthermore, it is well-known that if ~is a finite-dimensional simple Lie algebra, 

then an infinte-dimensional highest weight representation ITS/b)~J is unitarizable 

only if cO is a consistent antilinear anti-involution which corresponds to a Hermi- 

tian symmetric space, and all possibilities for ~ are listed in [1],[3]. 

There is the following "elementary" way to construct a unitarizable highest weight 

representation ~ of an affine Lie algebra ~. First, we take ~(C) = 0 so that 

[[ can be viewed as a representation of the Lie algebraC[Z,Z-~cginthenontwisted 
case~or its subalgebra in the"twisted~case. Furthermore, fix N non-zero complex numbers 

~--- ~ ~ evaluation map at C£ C4 , CN and denote by ~ : ~ [7=,-£_i]~ _~ the 

~.~, ~ (%~ (~) = C~k ~ 0 . Fix a Borel subalgebra ~ of ~and a consistent 

antilinear anti-involution tO of ~ Let IT~C (~--4~..., N) be a unitarizable 

highest weight representation of ~on e (~) = L&a ~ (A&) . Then TT~& .~ 

is a unitarizable highest weight representation of ~ _ k 

Let p= ~[~i %'4] ~ E , define a representation p--~ by ~ ~k@~)--~C~'~CIb) 

and an antilinear anti-involution cO of ~by OJo (~=~ ~ ~) = E-W:~ (~).~) 

Then we have : 

Le,  = . . . . . .  ; 

e : . . . .  

Thus, the representa t ion TT~/~ of } o n  the space L~aCo (A) is un i t a r i zab le .  We 

cal l  these representat ions  eZcmc~utoPt~. 

Finally, let ~=  S~+a ~(~ [~, 9-'4] ) (i.e. we assume that the Center ~¢ 

acts trivially), let p_~-- ~ ((~.~.~ {.~.,)~. ~r I CLq=O for i" "2 ~ ~ Z~) , 
and le t  (~0. (~L~ ( ~ : ) )  -- ( e £ ~  E ~ ;  [-~-~) ) , where E~'j=A i f  ~.'~ 11 

or ~'~& 4 or A.=~= 4 , and ~2= -4 otherwise (for a(z) = ~- q'~ ~[K,~"] 

we write ~ (z) = ~ ~. ~£ ). 

Let ~ be a finitepositivemeasure on the unit circle ~C(I~.Define a linear functional 

. ~ ~ Define a representation ~m!~_-~ ~bY 

Then the representation IT~..~ of S~.(,~ (CC~,~.-~]) on the vector space 

called e~ceptiona~. We will show, as a part of a more generaLresult, that theyare 

unitarizable. 
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Now we can state our first main result. 

Theorem 5.1. L ~ b e  an af f ine  Lie algebra, £ e t ~  be a c o ~ t e n t a n t i £ i n e a r  anti-  

involution of ~and l e t  ~ be a Bor~ subalgebra o f ~  Let ~ : ~ - ~ C  be a 

l-dimensional repr~enta t ion  of ~ Then the representation ~ 2  ~ Offer on the 
space L b , ~  (~) is  unitarizab£e i f  and only i f  i t  i s  equivalent to ei th an in-  

tegrable representation, or an ~ementary representation, or an ezceptiona~ repre- 

s entatio n. 

4 . Elimination. 

We now begin to prove Theorem 3.1. This section is devoted to the negative, i.e. non- 

unitarizable, aspects. 

Let us first look at the affine Lie algebra k(sl 2) associated to s12(¢). We have 

that s12(~) = span ~,~.~ with commutation relations 

(4.1) [ ~,~ ] : ~, ,. 

We write elements ~ X of (&[ -~ , -~ - ' ]  ~ S ~ . a s  ~X. We have that 

(4.2) ~. ( $ ~ . )  = £ [~c., "~."'~ ~)~.. S ~.~. ~ (~ 'C . .  

where, in particular, 

(4.~ [ ~ ' ~ ,  ~ - ~  3 = ~ ~ , _ ~  c 

According to Proposition 2.1 there are, up to conjugacy, two distinct sets of positive 

roots. In either case, a consistent involution ~47 is of the form 

(4.4) ~ ( ~ )  = ~ . i ~  ,. ~ ( z : h )  : L , . ~ _ h  

where ~ = ~ : ~ . There are essensially four distinct parabolic subalgebras 

compatible with (some of) the involutions above : 

(4.5) 

= W. I "F:' k 
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P ~  = ~ t " ~ ' ,  ~ ,  ~ {  I ~ , o  } 

Assuming that L { A ~  L~.,,.(A)is unitarizable,  we now analyze the res tr ic t ions  
this requirement imposes on the data. First we observe, as remarked after Lena I.i, 

that p k~ does not give other unitarizahle modules than does ~$~ . A second simpli- 

fying observation is, that due to the symmetry of the Hermitian form, in the case of 

~&~ , ~ ~ ~-~)~,~. ~ for some a. ~1~, Hence, the treatment of this case is covered 

by that of ~a~. 

Returning to (4.4), it follows that 

(4.6) 60 C "~'~' k ) = ~ ~_ ~C~.~'~ ') __ ~.~ ~_~ ~:-- ~. 

Let us turn to an examination of the standard set of positive roots: 

Firstly, the symmetry of H forces ~ = ~ ~n~o • Secondly, we have that for all 

k , ~  ~ 

)',, 
(4.7) 

. ~ , ~ )  I-4 ( C ~ " e ) ~ ' ,  , (.r'~:) ~ ) 
I= 

It is no loss of generality to assume that (~'ze) ~ o  since we may otherwise 

with some --C~'~e)~/ ~ ~ . Thus if the module is unitarizable justreplace it 

and non-trivial, then 6~ = £z = ~ . This is the compact antilinear anti-involution, 

and hence by the sl2-theory, L(A) is an integrable representation 

(observe that ~j ¢ e ~+ , and ~ ~ ~). 

In the natural case we have 

Thus , positivity of H implies that c = 0 and E~ = ~ . Further we observe that for 

a general a = ~ (~ ~-~ ~ (~ E "£i ~'^J 

(4.9)  H ( ~ ~ ' ~  i C~.~fA ) ----" ~'1 ~ ( O. ~ ~ )  

o. ~- ~g; -~-" where -- . Thus, ~I ~ is a positive linear functional on ~ [~,~-"J 

It is then natural to represent ~'[~lq~ -~] as the set of functions on S I, 

e I all but a finite number of the an'S are non-zero] 

The positivity of ~4 ~ implies continuity and thus it extends to a positive Radon 

measure~(i.e, locally finite)on S ~. It follows from the general result; Proposition 

6.2 below, that the module L~at ~ (%) is irreducible except in the case where 
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supp (~) is contained in a finite number of points. 

Consider then the case g4=I • This corresponds to a compact (su(2)) situation. Thus 

there must exist an integer ~o e ~ and a non-trivial invariant subspace ~o such 

that ~ ~ ~o : 6~. Thus, the measure /~ must be finitely supported. It is 

straightforward that in this case we do have unitarity. 

Finally, as we shall see below, the case ~4 =-~ leads to unitarity. 

Let us summarize : 

4.1. 

(4.10) I~ so" 
: ~(e)-- I ) 

the following situations may lead to u ~ a r i t y .  

t ,o ( . :~)  = e , ~o ~ . z h ) =  z - ' l ~  and c > . l ~ l  

S 4 

w h e r e i f  ~ = ~ ) 

Raaon meas~e. [] 

is  f in i t e ly  supported, and always, ~ is  a posit£ve 

An immediate consequence of this lemma for an arbitrary affine Lie algebra is that 

for the standard system of positive roots only the compact involution may lead to 

unitarity (and hence L(~) must be an integrable representation).Turning now to the 

natural or partly natural ("non-standard") situation we will assume that the measures 

involved are not finitely supported since this case is easily dealt with (cf. §3). It 

follows from Lemma 4.1 that now c=0, and £O (e~)~-~_~¢ ("non-compact") on the 

non- standard part. 

Let ~denote a simple complex Lie algebra of finite diemnsion. It is well-known [2] 

and quite straight forward to see that besides conjugation in a compact real form, 

the only situations that lead to unitarizable highest weight modules are those where 

~ has a real form corresponding to a Hermitian symmetric space, and where ~ is 

conjugation with respect to this. 

Specifically, let ~e--'-I~)~ and let ~= k ~ | be a Caftan decomposition of 

the real Lie algebra Q~ . Then ~ has a one ~-dimensional center ~--- R ~ , where 

is chosen such that its ~ eigenvalues under the adjoint action on ~C are +-L. Let 

Let k, = f~,~ and let i ~ be a maximal abelian subalgebra of ~. ThenLzi~O ~k ~ 

~ = (~ ~ (~ k4 ) • ~ ~jC~ ~k) ~s a Cartan subalgebra of ~ , and h=~) 

is ~ Cartan subalgebra of ~ The sets of compact and non-compact roots of ~relative 

to are denoted ~C and , , respectively ~ ~= ~¢. ~ ~-n . We choose an ordering 
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of A such that 

For ~e ~ let HI 

For ~6 /~ choose 

(4.12) 

be the unique element of ~ ~ [ ~ . ,  ~-8Jfor which ~C~tF ' ) -=~  ' 
e'~£ ~ such that 

and let ~_~ = ~ e~) . 

Since in any non-standard situation c = 0, and since by the assumptions on the measu- 

res we are looking at irreducible modules (cf. §6), it follows from the preceding 

analysis that ~ ( ~ ['~ ~ ~'¢J ~ ~4 ~) " ~ must be in the Kernel of the Hermitian 

form. Thus our module is "scalar", that is, of the form 

(4.13) M ( ~ ) = z ~  ( ([~ [ ~ ,  ~_~j ~ p- ) . ,1)- A 

for some positive measure ~ which is not supported by a finite number of points. 

Observe that 

 4.14) 7o = - *F ca) < o 

We now recall a result about the scalar modules ~ ( p').~Awith %~ as above 

([6] , [7J). If there a~e at £ea~t two perpendicular non-compact roots (i. e. the real 

rank i s  greater  than one) then for  (a r i n s e  number af) c r i t i c a l  values C4, c , j  . . . .  

• .. ~ O>C,~Cz2..., themodule ~ (~-).~with ~a=Ci ~,4, Z,... i s  reducib le .  

In f ac t ,  the  Hermitian form r e s t r i c t e d  to  t h i s  space i s  degenerate. Thus, when ~o 

equals one of these critical values, by the irreducibility of ~(I) (P, roposition 6.2) 

there can be no unitarity. Finally, for any ~< 0, it is easy to deform the measure 

, without destroying the irreducibility, into a measure~ which y~elds a ~o 

among these critical walues. We may thus state: 
Q 

Proposi t ion 4.2. In case  the  r ea l  rank  of ~ i s  greater  than one there  can be no uni-  

tarizab£e mod~e based on a n a ~  parabolic  subalgebra and on i n f i n i t e l y  supported 

Remark : Hence only ~ffi su(n,l) remains. 

To bring our analysis to a conclusion we now turn to the "twisted" affine Lie algebras 

(4.15) 
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We maintain the assumption that the measures are not finitely supported. In a non- 

standard situation, c = 0, and thus, restricted toga one must be in a non-standard 

or trivial situation. However, if the module is trivial on ~, it is trivial ~:~ . 

Thus, by the preceding results, the only case that needs to be considered is ) 

with a natural parabolic subalgebra in ~ : 

(4.16) Az = ~o • ~.4 and 

~0 = ~ = S~afY~ { e a ~l k ~ as in (3.1). 

Observe that the non-standardness of ~ forces a non-standardness on the full algebra. 

Inside ~4 one can easily find elements ~4~ U4- S ~ and ~z-such that 

- ,  , k 

as Lie algebras, and such that 

fa + " Since we must have ~J[e),- nd CO ( a4 ~=-~, it follows that 6(J~b~z+)= ('~a- , and 

this is impossible (it is compact). Thus at this level, there are no unitarizable 

modules. 

Thus, the only highest weight representations which may be unitarizable are those 

listed in Theorem 3.1. 

~. Unitarity. 

Let R denote a (non-commutative) associative algebra over ~ and let ~ be a 

trace on R, i.e. a linear map of R into ~i which satisfies 

We define the Lie algebra 

for all a,b ~ 

and we consider the Verma module M(~) defined by the property that there exists a 

non-zero vector "L~q such that 

O ~4 

Let ~ e ~ . We say that ~ = [~4 ~ ..... , ~& ) 6 N $ is an s-p(~Z;t~on O~ i if 

(5.4) i = ~'4 4" ~- ~- ...... -~ ~'S ) and 
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~e let Pars(i) denote the set of all such s-tuples. Further, if '~Pars(i) we let 

~ (~) denote the set of distributions of i objects in the Young diagram of -~" 

denote the product of the elements in the jth row. 

Let ~ e P~(~/J. Utilizing the fact that ~ is a trace, we will say that 

~: X ~T~ ~ S~ K ~ is equivalent to ~r~ x ~'z ~ ~8/ ~ , where SN denotes the 

group of permutations of N letters, if for all ~ ~ .... ~ -~f ~ 60~ .... cj. 6 R 

can be obtained from the analogous expression for ~i X IT z by a permutation of the 

s factors ~(... ) andior by <yclic permutation of the variables (e.q. ~ [~>% ~,m, 

The set of equivalence classes is' denoted by (S N x S N) (~). 

L~mma 5. I.  L e t  ~ ,  , . . . ,  . ~  ~ ~ , . . .  , W~ e R .  Then i n  M{?) , 

(5.6) ~ E ~ ~-~ ~' 

Proof :We proceed by induction. N = I is trivial, so assume (5.6) is true up to N. 

We have, by (5.3), 

(5.7) k ] 0 0 0 0 t~Ji o3N+4 0 
% 

N+4 A 

7- , Co  .)too) (° °) ..(° 
(=4 ) : j  j o :) 
c_,~.+~ T (o o o J~, (~,.o + J~c 

i e~+, o°) 
This, then, can be evaluated using (5.6), and as a result one will get an expression 

analogous to this. To treat the constants rigorously it is, by symmetry, enough to 

examine terms of the form 

(5.8) t-~)~'~(~,~, .... ~. ~, ) .... ~-~)r~ ~ (a~,+ ~ +~)--" ~. ~+~) 

Assuming ~$')4 ( ~S = ~ is trivial), the only way in which such a term can emerge 

is clearly by replacing G~ N by -b0N~N,~J~4in the analogous expression 
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c~,<,,,~ . . . .  ~ -~ ,~ ,~  ) . - c - ~ )  ~ - '  ~c  ~4+...+~_ + ~ ~,,,°-',,,J 

in (5.6). 

As a first application of this result we get the unitarizability for su(~4) : 

Let R denote the algebra of polynomial functions from the circle into ~ [~'~ ~ . 

Let tr denote the usual trace on ~(fi~J and define 
/ /  

Co(oJ) : - f ' "  ( ,> io;J  <?,, 
u 
o 

for some positive Radon measure~ . Observe that -- ~/(PlfOJP2{OJ') 

defines a positive defintie inner product on R. Take the z's of (5.6) to be of the 

¢ ,  e Cz e.. . . . . .  Cr 
0 0 . . . . . . . . . . . . . . .  o 

(5.10) • = 
; 

o 6 . . . . . . . . . .  " . . . .  o 

and the w's to be of the form z*, and observe that any product z~.z~* gives a matrix 

with at most one non-zero entry, namely the upper left hand corner. It follows that 

any expression ~z ~ ~ .... ~z~-i ~zW can be written as a product ~'~b ~ 

of just two elements of R. Thus (5.6) expresses the Hermitian form on the module 

M i X )  (with =~see (1.5)) as a sum of tensor products of positive definite 

Hermitian forms, and thus as something positive. This observation completes the 

proof of Theorem 3.1. 

Consider now the case where R is a commutative algebra over ~ and assume that 

&--~(l # is an antilinear involution of R such that 

(5.11)  ~ (&'le) : I~P ( a , j  f o r  a l l  a 6, [~ 

Define an antilinear anti-involution t2 of 5~ z ~, L~J by 

(5.12) 60 f~ ~ ----- 

C ° and i d e n t i f y  e l e m e n t s  C 

5 . 1  i s  t h e n ~  

Corollary 5.2 " For a,b ~ R put (a,b)=-~(b*a). Then 

H C~. ~ . . ~  . . . .  J c~ . ,  = 

(5.13) rv 5, ~.4. 
= ~ . .  ~ 7__ 5-- K .TT  Cry. Cacb)~ 

S: l  Ig~ P~rs(.N) try%-, e D~(~) ~ i : 4  

defines the contravariant Hermitian form on M (9) ~where, i f  

°) 
O with the entry C6R. An easy consequence of Lemma 

Q 
, o L C i : ~ - ) ~  ) 
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Corollary 5.3 : ~V .is posi t ive  semi-aefini~e i f  and only i f  the form 

(5.14) ( O., ~) -- ~ C ~v' O~ ) 

pos i t i ve  semi-defin2te on R. Q 

Remark 1. In the case R = ~ [ ~,%-~] with ~ evaluation at I, the Nermitian 

form has a (large) kernel. Thus, in particular M (~) need not be irreducible (cf §3 

and below) - 

Remark 2. Let R be an arbitrary commutative algebra with a basis I Q~E8 "Define 

the structure constants C=~  by 

where the usual summation convention is used. The elements of the form 

form a basis of M (~), and (0~,~), "I]"~ ,~ ~P(~=~ ).'V"= .~r  
o 

Due to the commutativity of the oL{'s it is natural to represent M (~ as a space of 

polynomials ~ [ ~  ~ ~ S ] , and it follows easily that the action 

by left multiplication on M(~) is transformed into the following action on 

~o ~ : Multiplication by Xo~ o 

cO.k=<. 

In particular, for (1~ f"~: ,  " -~- '  ] we have that C~,~o : $m+'mn,Z 
(0.9) in the introduction thus follow immediately . 

and the formulas 

6. Irreducibility. 

Let ~ be a finite-dimensional simple Lie algebra over ~ ! a Cartan subalgebraj 

/~ the set of roots,T[= ~4 .... ~t~ a basis of A , and /~+ 'the corresponding set of 

positive roots. Consider a subset Y of T~ and let 

(61) Ay = & n Z, 
¢~i eY ' 

~+ ~ defined analogously. Further, let with ~ ; 

(6.2) = -i (~ 

be a decomposition of ;such 

I 

,/ 

that ~o ~ is a compatible parabolic. Let ~ ~.~ 
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{ I~ i ~ ~ ~-~ be a Chevalley basis of ~. We assume that Y ~ 77" and 
consider an element A of ~ satisfying A(M.~L~.0for ~,'~ 7 and A ( ~ # ) :  
.~ ÷ o f o r ~ # ¢ V  . , o r  l a t e r  use we now prove__ a l o = a  ahout ( g e n o r a l i ~ e d )  Versa 

mo u e . 

vector in the l-dimensional space of the ~(~o :~4 ) -module defined by ~ . 

Lemma 6.1 Let ~ e  ~ b e  a weight  vector  such t h a t  ~ , I ) ' = o  for  a££ ~ ~ ~+.  Let 

~= ~ .  ~ ~ fo r  some ~ ~ ~ (~.4) . Then, i f  ~ i s  expanded on a standard Poinear~- 

Birkhof f -Wi£t  basis ,  a t  l e a s t - o n e  of the  summands y ie ld ing  non-zero coordinates con- 

ta ins  a fac tor  of some ~ _ ~  ~ c~@ ~ ~ \ ~ . 

Proof. Let ~ denote the minimum height of the ~¢'s for which ~_~ occur in ~. 

Suppose ~ >I and let ~f~[ be chosen such that E~£~ ~ ] contains a term with 

a factor of height t~ -i. (Choose e.~. the ordering compatible with height). Since 

~,~' LL] = O, another term is needed to remove this again, but this can evidently 

only be done through the negative of the expression that yielded the first term. 

Thus, ~ >i contradicts the non-triviality of L~ • [] 

Let R be a commutative algebra and let {~f~ be a finite family of linear functionals 

on R. To avoid instant degeneracy we assume that 

(6.3a) ~ ~ R ) ~ £  ( ~ )  = 0 implies a = 0 for  each £. 

(6.3b) R contains no f ini te-dimem~ional  n o n - t ~ v i a l i d e a £ s .  

We let 0~0 define a l-dimensional ~(~o ~)-module through a regular element 

. We now define a linear map a~: ~ ~-_~by 

I 

with the /~£ 

~(~@~) - module 

as before, and corresponding to this we consider the left 

(6.5) ~ ( A~ ) -- ~ (~,~ ~ R ) , ~U-~ 7 

where we now have ( ~ ~ ~ I ~-~ = A~ ( G_ ~ ~)'%f'~ 

Proposi t ion 6.2. M ( Ay ) i s  i r reduc ib le .  

Pr0of. Suppose that S is a non-trivial invariant subspace. As in the finite-dimen- 

sional case there is at least one non-zero element ~'of S which satisfies 

(6.6) ~ O~ e R / Vol 6 /k+ ,' O~ e~ ~U" = (~ 

and we may write q~= Lio, ~for a unique OLo ~(~1~)-Let oL~ 

/ 
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Choose an ordering of A- \ ~ such that the smallest elements are those ~ for which 

[e~ ~.In a Poincar~-Birkhoff-Witt basis we write those terms to the left. / 

Further we shall assume, as we may, that at this level, ~+~z is bigger than ~ 
o 

and ~ . We write monomials in ~(q.1~ ~ ) made up entirely of elements whose 

~part ~d, commutes with ~ as ~(o). Again, inside a LL(O), the smallest elements 
O 

~oto the left. Next in the ordering come those'~ for which [ e~ ~ ~J# O and 

=~+ ~" ~t ~ has ~ --coefficient ~ . These we order in an arbitrary 

fixed way. Monomials in ~Iql ~. ~) corresponding entirely to such roots are deno- 

ted by ~(i). Then we define ~(2),... ~(j) analogously. For convenience we also allow 

the ~(j)'s to be constants. It follows from Le~ma 6.1 that there exists at least one 

~ ~ [~ ~which satisfies that when we write ~ as a sum of expressions 

~(~)~(I) .... ~(~:then at least one ~I) contains a factor ~-~ for some ~ ~. 

We proceed with a fixed ~ satisfying this and now claim that any of the 

~4)I~ occuring is made up entirely of products of ~'@ e_~ I s and that, further- 

more, the ~(~)'5 for j> i must be constants. Again we argue by contradiction : 

Suppose that some ~) contains a factor ~-~ with ~ . Let us describe this 

by saying that o~ satisfies (*). Let ~ be that element of the set of roots 

satisfying (*) for which the root ~ l= o(~ --~ is smallest. Consider a monomial 

~(O)~L(~) .... L~) where the full factor in ~(~) containing ~ ~ is, say, 

Assume for simplicity that the ~f are linearly independent. When we compute 

[ ~ ~; ~o ~ we then get a monomial where, say, the ~(o) part contains a 

e r, ~_~ and where the ~(I) part contains ~z~_~ ) .... 6Y~-~) . On the other 

hand, by (6.6) we must get zero and hence we must remove this expression again. But 

this can only be done through the adjoint action of ~ ~ on some ~(j) with 

j > I or on portions of ~(i) not of the form ~ ~-~- , and this does not change 

the coefficients of the terms in ~(o) involving Y~-~' ~. Hence, for all ~ ~ ~ , 

~'~ must be in the span S of the elements ~ for which /~_~ occurs in some 

~(o) in the decomposition of ~o" In other words, ~. ~ ~ and S is finite-dlmensional 

This contradicts (6.3b~.Further, it now follows analogously that the ~(~'J/~ are 

constants for j > i. Thus ~a is a sum of terms of the form ~O)(~. ~ ~_~) 

for some fixed N, and where the L~ol~ are linearly independent It then follows 

from (6.6) that there exists a non-zero element a~ R, and some i such that 

~ (~c)=O for all c~R. Thus, ~ violates (6.3a),and this is a contradiction.~ 

~ . Let X be a compact pathwise connected Hausdorff space and let R be a non- 

trivial (i.e. ~ O~ ~ ~ ) subalgebra of C(X). Then R contains no non-~rivial 

finite-dimensional ideals. [] 
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I n s t i t u t  F o u r i e r  
L a b o r a t o i r e  de  M a t h ~ m a t i q u e s  
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38402 S T  M A R T I N  D ' H E R E S  - F r a n c e  

We  r e v i e w  s o m e  b a s i c  d e f i n i t i o n s  and  r e s u l t s  of the  f o r m a l  t h e o r y  of o v e r d e t e r m i n e d  

s y s t e m s  of  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s .  W e  h a v e  t r i e d  to p r e s e n t  t h e m  the  m o s t  

s i m p l y  p o s s i b l e ,  in  a l a n g u a g e  fo r  n o n - e x p e r t s .  As  i l l u s t r a t i o n ,  we  t r e a t  a f a m i l i a r  

e x a m p l e  fo r  p h y s i c i s t s  : t h e  E i n s t e i n  e q u a t i o n s .  

l .  - F O R M A L  SOLUTIONS OF  D I F F E R E N T I A L  EQUATIONS.  
L 

F i r s t  we  r e c a l l  s o m e  c l a s s i c a l  n o t a t i o n s  in  a n a l y s i s .  L e t  U b e  an  open  s e t  in  ~ n  . 
¢o m 

We d e n o t e  by  C (U,IR ) the  s p a c e  of d i f f e r e n t i a b l e  f u n c t i o n s  on U , w i th  v a l u e s  in  

~ m  If a (a 1 . . . . .  a n ) E IN n and  x = (x 1 . . . . .  x n) E IR n • = , we  s e t ,  I a l  = a l + ' " + a  n , 

x = x 1 , . . x  n ; fo r  p a r t i a l  d e r i v a t i v e s ,  we  s h a l l  w r i t e  

- , i f  f E C ~ ( U , I R )  , 

&t &n 
~ i  "'" bXn 

and  

D a f  = (Daf  I . . . . .  D a f  m)  , 
¢o m 

i f  f = (f l  . . . . .  fm)  E C ( U , ~ )  . 

L e t  x b e  a po in t  of  U , and  k a non  n e g a t i v e  i n t e g e r .  A k - l e t  a t  x of  f u n c t i o n  

of U in  ~ m  i s  the  c o l l e c t i o n  of the  v a l u e s  a t  x of  a f u n c t i o n  f E  C¢°(U,]~ m) and  
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i t s  p a r t i a l  d e r i v a t i v e s  up to o r d e r  k . We d e n o t e  by  Jk(U,RRm) x the  v e c t o r  s p a c e  of 

t h e s e  j e t s  and  by  jk(f)(x) the  k - j e t  a t  x of a f u n c t i o n  f : U ~ IR m . We c a n  i d e n -  
m 

t ify J k ( U , ~  )x wi th  the  s p a c e  of T a y l o r  p o l y n o m i a l s  

F = ~ F(y-x) ct F EIR m 

of o r d e r  k at  x of f u n c t i o n s  of U in to  

p h i s m  

IR m . I f  k = 0  , we h a v e  a l i n e a r  i s o m o r -  

m iFlm Jo(U,IR )x ~ " 

We a l s o  c o n s i d e r  the  s e t  of a l l  k - j e t s  

m 
J k  (U ' lRm)  = ~ J k  ( U ' ] R ) x  " 

x~l~ 

If we f ix  a po in t  x 0 in  U , we obv ious ly  h a v e  

Jk (U,  IR m)  ~ U x Jk{U, IRm)xo . 

We d e n o t e  by  

rT : J k ( U , l R m )  ---~U 

the  s o u r c e  m a p p i n g  s e n d i n g  F = ~ F (y-x) cc on x 
loci ~ k ct 

F o r  e ~ 0 , we h a v e  a n a t u r a l  p r o j e c t i o n  

n k : J k + e ( U , I R m ) - - ~ J k ( U , I R m )  

w h i c h  s e n d s  F = ~ F (y-x) ct on ~ F (y±x) ct 

jk+e(f)(x) o n  jk(f)(x)) . T h e  m a p p i n g  

~0 : J k  (U' IRm) " -~  IRm 

i s  c a l l e d  t a r j e t  p r o j e c t i o n .  

(or e q u i v a l e n t l y  jk(f)(x) on x) 

(or e q u i v a l e n t l y  a ( k + D - j e t  

F o r  x EU , i t  i s  e a s i l y  s e e n  tha t  

Ker (~0  : j l g A , ~ m ) x  - - ~  ~ m )  ~ Hom(lRn,  iR m)  

M o r e  g e n e r a l l y ,  

Ke r  (n  0 : Jk (U,  ~Rm)x ~ IR m )  

i s  the  s p a c e  of T a y l o r  p o l y n o m i a l s  at  x , wi thou t  c o n s t a n t  t e r m .  On a n  o the r  hand ,  
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K e r ( ~ k _ l  : Jk(U, lRm) x ~ J k _ l ( U , I R m ) x )  

k n lRm) i s  the  s p a c e  ~x(lR , 

~ n  
k on , wi th  va lue s  in 

o f  h o m o g e n e o u s  p o l y n o m i a l s  F = ~ F (y-x) c~ , of d e g r e e  

IR m . Thus  we have  the  exac t  s e q u e n c e  of v e c t o r  s p a c e s  

k n m m 
(1.1)  0 - - ~  e x ( ~  ,IR ) ~ Jk(U,IR )x 

~k-1 m 
J k - 1  ( U ' ~  ) x - - ~  0 . 

In the  fo l lowing,  we sha l l  s e t  

k n ~k(U,IRm) = U Px(IR ,IR m) . 

xEl: 

Now we c o n s i d e r  a d i f f e r e n t i a l  o p e r a t o r  

co p 
P : C (U,IR m) - - ~  C ( U , I R )  

of o r d e r  k ~  1 . We have  

fo r  x E l -  and f E C~(U,IR m) , w h e r e  

in lR p . 

i s  s o m e  d i f f e r e n t i a b l e  funct ion  with v a l u e s  

F o r  x E  E , we i n t r o d u c e  the  s u b s e t  

R k ,  x = = ; : 0 i  

of J k ( U , l R m ) x  , wh ich  i s  c a l l e d  the  s e t  of f o r m a l  s o l u t i o n s  of o r d e r  k of P at  x . 

M o r e  g e n e r a l l y ,  fo r  e ~ 0 , the  s e t  R k + e , x  of f o r m a l  s o l u t i o n s  of o r d e r  k+e of P 

at x i s  the  s u b s e t  of Jk+e{U,IRm) x de f i ned  as  fo l lows  : a j e t  F = ~ F (y-x) c~ 

i s  in  Rk+~,x  i f  the  Tay lo r  expans ion  at x of P F  has  no t e r m  of o r d e r  ~ e • In 

o t h e r  w o r d s ,  for  f E  C~{U,IR m) , the  j e t  jk+~{f)(x) b e l o n g s  to Rk+e ,  x i f  and only 

i f  jg(Pf)(x) = 0 , or  equ iva len t ly  

(D~Pf)(x) = 0 , fo r  I~1 ~ e . 

A c c o r d i n g  to (1.2) ,  we r e m a r k  that  Rk, x and  Rk+e,  x a r e  w e l l - d e f i n e d .  We r e m a r k  

a l s o  that ,  in  the  non l i n e a r  c a s e ,  they  c a n  b e  e m p t y .  We s e t  

R k = O Rk, x ' Rk+ ~ = U R k + e , x  
xEU xET: 

In the  c l a s s i c a l  t e r m i n o l o g y  of the  f o r m a l  t h e o r y ,  R k i s  the  d i f f e r e n t i a l  equa t ion  a s s o -  
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th  
c i a t e d  to P , and Rk+ ~ the  ~ - p r o l o n g a t i o n  of R k . 

F o r  £ ~ 0 , we de f ine  a m a p p i n g  

Pe(P) : Jk+~(U, ]Rm)  - - ~  Je(U,IRP) 

s e n d i n g  F = ~ F (y-x) c~ on the  T a y l o r  p o l y n o m i a l  of o r d e r  £ a t  

(or ,  equ iva l en t l y ,  a (k+e) - j e t  jk+e(f)(x) on j¢(Pf)(x)) . It i s  c l e a r  tha t  

Rk+ e = IFeJk+¢(U,IRm ) ; Pe(P)F = 01 

Moreover, for ¢ > 0 , it is easily seen that the diagram 

(1.3) 

m P e+l (P) 
J k + e + l ( U ,  IR ) ~ J e + I ( u , ~ P )  

Pg(P) 
Jk+e (U, m m) ~ J e(u, ]R p) 

i s  c o m m u t a t i v e .  

x of P F  

By de f in i t ion ,  for  ~ ~ 0 , the  n a t u r a l  p r o j e c t i o n  

( l .4 )~  ~k+e : J k + e + l  (U ' IRm) ~ J k + e  (U ' IRm)  

m a p s  Rk+~+ l in  Rk+ e . But  i f  the  m a p p i n g s  

not in  g e n e r a l  the  c a s e  fo r  the  m a p p i n g s  

( l . 5 )¢  ~k+~ : Rk+~+l  - - ~  Rk+¢ " 

(1.4) a r e  a l w a y s  s u r j e c t i v e ,  th i s  i s  

Now we # v e  the  

DEFINITION 1 . 1 .  - T h e  o p e r a t o r  P i s  f o r m a l l y  i n t e g r a b l e  i f  the  m a p p i n g  (1.5)e 

i s  s u r j e c t i v e ,  fo r  a l l  e ~ 0 . 

If F E Rk+ ~ i s  of the  f o r m  

rTk+~G , wi th  G E Rk+~+ I , 

we s a y  that  the  f o r m a l  s o l u t i o n  F of o r d e r  k+e  c a n  b e  ex t ended  to a f o r m a l  so lu t i on  

of o r d e r  k+e+1 . Thus  we s e e  tha t  P i s  f o r m a l l y  i n t e g r a b l e  iff ,  fo r  e v e r y  ~ ~ 0 , 



25 

e v e r y  f o r m a l  s o l u t i o n  of o r d e r  k+£ of P c a n  b e  e x t e n d e d  to a f o r m a l  s o l u t i o n  of 

o r d e r  k+e+l  of  P . 

F o r  x E U  we d e n o t e  by  J ( U ,  m ' ~ )x the  s p a c e  of f o r m a l  p o w e r  s e r i e s  

q-co 

F (y-x) a , F E]R m • 
l a l =  0 a ct 

A f o r m a l  p o w e r  s e r i e s  s o l u t i o n  of P at  x , i s  an  e l e m e n t  F of J ( U ,  IRm) x s u c h  

tha t  P F  v a n i s h e s  to i n f i n i t e  o r d e r  at  x . T h e  fo l l owing  o b v i o u s  l e m m a  s a y s  tha t  

f o r m a l l y  i n t e g r a b l e  o p e r a t o r s  h a v e  m a n y  f o r m a l  p o w e r  s e r i e s  s o l u t i o n s .  

LEMMA 1.1. - Suppose that P is formally integrable, and that, fo__r x E D , 

F = la~k~< F a ( y - x ) a  i s  a f o r m a l  s o l u t i o n  of o r d e r  ~k __of P __at x . T h e n  

t h e r e  e x i s t s  a f o r m a l  p o w e r  s e r i e s  s o l u t i o n  G = ~ G (y-x)  a o f  P a t  x , 
(:t 

s u c h  tha t  G : F , f o r  Ict l ~ k. Lct l=° 
I I 

CL (Z - -  

T h e  o p e r a t o r  P i s  s a i d  to b e  r e a l  ana l y t i c  i f  t he  f u n c t i o n  ¢ in  ( l . 2 )  i s  r e a l  a n a -  

ly t i c .  In th i s  c a s e ,  t he  fo l lowing  p r o p o s i t i o n  g u a r a n t e e s  the  e x i s t e n c e  of  g e n u i n e  l oca l  

solutions : 

P R O P O S I T I O N  1 . 1 .  - S u p p o s e  tha t  P i s  a r e a l  a n a l y t i c ,  f o r m a l l y  i n t e g r a b l e  

Rk, , t h e r e  e x i s t s  a r e a l  ana ly t i c  f u n c t i o n  o p e r a t o r .  F o r  a l l  x 6  U and F 6 x 
113 

f : U ~ R ~ -  , d e f i n e d  in  a n e i g h b o r h o o d  of x , s u c h  tha t  

P f  = 0 and  jk(f)(x) = F . 

Remark. In the non-linear case, the operator P is not in general defined on the 

whole space C~(U,~ m) , but only on functions whose partial derivatives up to an order 

k 0 ~ k satisfy an open condition (as typical example, we mention the "open" set of 

maximal rank functions). This situation doesn't change our presentation : everywhere, 

we have only to restrict our attention to the jets or Taylor polynomials satisfying the 

open  condition. 

2. - THE L I N E A R  CAS E .  

If we on ly  u s e  de f in i t i on  1 . 1 ,  the  f o r m a l  i n t e g r a b i l i t y  i n v o l v e s  an  i n f i n i t y  of  v e r i f i c a t i o n s .  

In th i s  p a r a g r a p h  (for t he  l i n e a r  c a s e )  and  in  the  nex t  (for  the  n o n - l i n e a r  c a s e ) ,  we  

p r e s e n t  the  C a r t a n - K ~ / h l e r  c r i t e r i o n  w h i c h  p e r m i t s  u s  to p r o v e  the  f o r m a l  i n t e g r a b i l i t y  
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i n  a f i n i t e  n u m b e r  of s t e p s .  

Now, we suppose that 

P : C °~(U, Rq m) ~ C c°(U, IR p) 

is a linear differential operator of order 

ping 

pe(P)  • Jk+e(U, l~ lm)x  - - ~  J (U, IRP)x 

i s  l i n e a r  and  i t s  k e r n e l  i s  IRk+C, x " 

T h e  s y m b o l  of P a t  x £ U  i s  the  v e c t o r  s p a c e  

gk, x = (Rk, ~ f~ ek(~n, lRm) . 

Thus an element of gk, x is just a formal solution 

such that the partial derivatives (D~)(x) vanish for 

prolongation of gk, x is 

k +~ n m 
(R + )n Px (m ,m ) gk+ e, x k e ,x  

We set 

= ' = ['J g k + e , x  " gk xEu~J gk, x gk+e x612 

We i n t r o d u c e  the  s y m b o l  m a p p i n g  

~(P) : ~kcc, lq m) -_~ IR p 

of P , wh ich  i s  the  r e s t r i c t i o n  of 

Po(P) : Jk(U,IRm) --~ IR p . 

k . Then ,  fo r  x £ 1 2  and  e ~ 0 , the  m a p -  

jk(f)(x) of order k of P at x 

Icc l <k . For £> 0 , the £th 

For £ > 0 , we can also consider the restriction o~(P) of pe(P) to Pk+e(U,IRm) . 

Thanks to the commutativity of (1.3), o£(P) takes its values in p£(B n,IR p) . The 

mapping oe(P) is the £th-prolongation of o(P) = o0(P) . Obviously, we have 

gk+~ ,x  = K e r  ( o ~ ( P ) :  Pk+e(lqn,  IRm) - -  ~x~(1Rn, IRP)) , 

f o r  a l l  x £ U  . 

L e t  {e 1 . . . . .  en}  b e  a b a s i s  of IR n and  u 1 . . . . .  u n the  a s s o c i a t e d  l i n e a r  c o o r d i n a t e s .  

F o r  x E U  and  1 $ j ,c n - 1  , we deno te  by  pk{IRn, I R m ) .  . the  s u b s p a c e s  of 
k n m x t e  1 . . . . .  ej  j 

p o l y n o m i a l s  F in  Ox(lR ,IR ) w h i c h  s a t i s f y  
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~._£_F = 

~u I 

Then  we se t  

= ~__~_F = 0 .  
"'" ~uj 

(gk, x ) [e  1 . . . . .  ej  ] 

k n m 
= (gk, x )0  P (IR ,IR ) .  

x [e 1 . . . . .  ej ] 

We say  that  P is  i nvo lu t ive  at a po in t  x of U i f  t h e r e  e x i s t s  a b a s i s  [e  I . . . . .  en} 

of ~ n  s u c h  that  

n-1 

(2.1) d im g k + l , x  = d im gk, x + ~ d im (gk, x ) 
j= l  [ e  I . . . . .  e j  } 

A b a s i s  s u c h  that  (2.1) ho lds  i s  c a l l e d  q u a s i - r e g u l a r  fo r  gk, x " We say  that  P i s  

invo lu t ive  i f  i t  i s  i nvo lu t ive  at  e v e r y  po in t  of U . 

If P s a t i s f i e s  s o m e  r e g u l a r i t y  c o n d i t i o n s ,  we  c a n  s t a t e  the  fo l lowing  c l a s s i c a l  

c r i t e r i o n  : 

THEOREM 2 .1 .  - Suppose  that  

(i) the  m a p  ~k : Rk+l  ~ Rk 

(ii) P i s  invo lu t ive .  

Then  P i s  f o r m a l l y  i n t e g r a b l e .  

i s  s u r j e c t i v e  ; 

T h e r ~ o r e ,  i f  we  c a n  ex t end  e v e r y  f o r m a l  so lu t ion  or  o r d e r  k of P to a f o r m a l  so lu t ion  

of o r d e r  k+l  , the  i n v o l u t i v n e s s  i n s u r e s  that  t h e r e  i s  no m o r e  o b s t r u c t i o n  to ex t end  f o r -  

m a l  s o l u t i o n s  of h ighe r  o r d e r s .  Al though th is  ques t ion  i s  v e r y  c l a s s i c a l ,  i t  would  b e  too 

long to exp la in  h e r e  how the  i n v o l u t i v n e s s  i s  r e l a t e d  to the  s u r j e e t i v i t y  of m a p p i n g s  

(1.5)e . It i s  m o r e  i n s t r u c t i v e  to g ive  a m e t h o d  for  p r o v i n g  (i) . F o r  e x a m p l e ,  in  g e o -  

m e t r i c  s i t u a t i o n s ,  the  s tudy  of cond i t ion  (ii} i s  that  of a " f l a t "  c a s e  and,  on an  o t h e r  

hand,  (i} s t r o n g l y  de pends  of the  g e o m e t r i c  o b j e c t s  a t t a c h e d  to the  p r o b l e m .  

Le t  x b e  a po in t  of 12 . W e  have  the  fo l lowing  exac t  and c o m m u t a t i v e  d i a g r a m  
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(2.2) 

pxk+l ( n, IRm) ° l  (P) 
" ~ Horn (IR n, IR p) 

0 -------~tlk+l, x " Jk+l  ( U ' I R ) x  . . . . .  & JI(U'11:IP)x 

1 il l r~ ~o 

PO (p) gip 
0 "--~Rk,  x__----~-~ Jk(U,IRm)x 

1 1 
0 0 

'r ...L~ K x ~ 0  

where,  in the top row, Kx is  the cokernel  of Ol(P ) and 'r the canonical  project ion.  

By a standard d iagram-chas ing  argument ,  we obtain the exact  sequence 

(2.3) Rk+l ,x  ~ Rk, x ~" Kx ' 

where  ~ is the l inear  map cons t ruc ted  by following the dotted path in (2.2). More 

p rec i se ly ,  if  F = jk(f)(x) is a formal  solution of o rder  k of P , we consider  the 

l inear  map , : ~ n  ~ P  given by 

, (e  0) = ~(Pf)(x) , I ~ i  g n  , 

0 0 . Then we have where Ce 1 .. . . .  en] is  the canonical  bas is  of ~{n 

(2.4) ~(F) = ~'(,) , 

and fi is  wel l-defined by (2.4). 

Now, the mapping rTk : Rk+l ,x  ~ Rk, x is onto if  and only if fl vanishes identical ly.  

In the examples,  the main point of this part  of the theory is to obtain a "good in t e rp re -  

tation" of the cokernel  K x and of T . 

3. - THE NON-LINEAR CASE. 

We can easi ly obtain an analogue of Theorem 2.1 in the non-l inear  case .  

We suppose that P is non-l inear  and defined on C~(U,IR m) . For  f E C~(U,IR 

let  
co m oo p~ : c  (u,n~) - - ~ c  iv,~P) 

m), 
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be the linearization of P along 

defined by 

P~(u) = ~t P(f+tu)It=0 ' 

for all u £C~°(U, nq m) • 

f : i t  i s  the l i nea r  d i f f e ren t i a l  o p e r a t o r  of o r d e r  k , 

m 
Let x EU and f EC (U, IR ) such that F =jk(f)(x) is a formal solution of order k 

of P at x . By definition, the symbol gk, F of P at F is the symbol at x of 

the linearization P~ of P along f . We say that gk, F is involutive if P~ is 

involutive at x . We remark that, for e~ 0 , the mapping 

pk+e ]Rn IR m px~(~n, IR p) 
°e(Pf) : x ( ' ) 

depends only of the k-jet of f at x , and, therefore, the notion of involutivness is 

well-defined in the non-linear case. 

Now, P is said to be involutive if gk, F is involutive for all formal solution F 6 R k. 

With this new definition, the theorem 2.1 remains valid in the non-linear ease : an 

involutive non-linear differential operator of order k , all of whose formal solutions of 

order k can be extended to formal solutions of order k+l , is formally integrable. 

Here also, to be rigorous, we need some obvious supplementary regularity conditions 

on P . 

To complete this paragraph, we define non-linear analogues of (2.3) and (2.4). Let 

x EU and f E C~(U,Rq m) such that F = jk(f)(x) EBk, x • We have the following 

commutative diagram 

'r F 
°l(Pf) Horn (~{ n, IR m ) 0 pk+l(IRn, IR m) , , KF-....-~ 

Pl (p) 
Jk+l (U, IRm)x ~ JI(U, IRP) x 

m PO (P) 
Jk(U, IR )x " IRP ' 

where, in the upper row, K F is the cokernel of o1(P~) and ,r F the canonical 

projection. By the same sort of methods that in the linear case, an element "~(F) 

K F is well-defined by setting 

of 



30 

~(F) = ~F(O, 
iRn ~ m  0 5Pf  

w h e r e  ~ : ~ i s  the  l i n e a r  m a p  s e n d i n g  e. on ----:(x 
1 1 

we h a v e  the  ~x 

, i = l,...,n Then 

P R O P O S I T I O N  3 . 1 .  - Le._.~t F 6 R k . T h e  fo l l owing  c o n d i t i o n s  a r e  e q u i v a l e n t  : 

(i) F e x t e n d s  to a f o r m a l  s o l u t i o n  of o r d e r  k+ l  of P ; 

(ii) "fl(F) = 0 . 

W h e n  the  o p e r a t o r  P 

the  s o u r c e  of F . T h e n  we  h a v e  a v e c t o r  s p a c e  

s u c h  tha t  the  s e q u e n c e  

r~k ~ K 
(3.1) R k + l , x  ~ Rk, x - ~  x 

i s  e x a c t  in t he  s e n s e  tha t  

rTk(Rk+l, x) = IF £ Rk, x;~(F) = O} . 

i s  q u a s i - l i n e a r ,  t he  v e c t o r  s p a c e  K F d e p e n d s  only  of 

K and  a m a p p i n g  f l :  R ~ K 
x k, x x 

In the  l i n e a r  c a s e ,  "fl i s  j u s t  the  l i n e a r  m a p  ~ and  (3.1) i s  the  e x a c t  s e q u e n c e  (2 .3) .  

4.  - THE INTRINSIC F O R M A L I S M .  

In the  c l a s s i c a l  e x a m p l e s  f u r n i s h e d  by  G e o m e t r y ,  M e c h a n i c s  o r  P h y s i c s ,  d i f f e r e n t i a l  

o p e r a t o r s  a r e  m o r e  n a t u r a l l y  de f i ned  on s e c t i o n s  of b u n d l e s  o v e r  m a n i f o l d s ,  i n s t e a d  of  

v e c t o r - v a l u e d  f u n c t i o n s  on an  open  s e t  of l~ n . H e n c e ,  we r a p i d l y  t r a d u c e  the  p r e c e d i n g  

p a r a g r a p h s  in th i s  i n t r i n s i c  l a n g u a g e .  

L e t  X b e  a d i f f e r e n t i a b l e  m a n i f o l d  of d i m e n s i o n  n and  E b e  a v e c t o r  b u n d l e  of  

r a n k  m over  X . We d e n o t e  by  E t he  s t a l k  of  E a t  x £ X , and  by  C¢°(E) the  
x 

s p a c e  of s e c t i o n s  of E o v e r  X . By u s i n g  l oca l  c o o r d i n a t e s ,  we  e a s i l y  de f i ne  j e t s  of  

f u n c t i o n s  b e t w e e n  d i f f e r e n t i a b l e  m a n i f o l d s .  In p a r t i c u l a r ,  fo r  k > 0 , we c a n  c o n s i d e r  

t he  s e t  of k - j e t s  of  s e c t i o n s  of E , w h i c h  i s  a new  v e c t o r  b u n d l e  Jk (E)  ove r  X . We 

d e n o t e  by  Jk(S)(X) the  k - j e t  of s at  x . F o r  g ~  0 , l e t  

~k : Jk+£  (E) ~ J k  (E) 

b e  the  n a t u r a l  p r o j e c t i o n  s e n d i n g  jk+£(s)(x)  on Jk(S)(X) . 
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If T and T # a re  r e spec t ive ly  the tangent and cotangent  bundles of X , we denote 

by skT ~ the k th - symmet r i c  product  of T ~ . Thus the sec t ions  of the vec tor  bundle 

skT#@E are  the s y m m e t r i c  k - fo rms  on X , with values  in E (at a point x £ X , 

(skT# ®E)x = skT@@x Ex is just  the space  of homogeneous polynomials  of degree  k on 

T x , with values in Ex) .  There  is  a canonical  monomorph i sm of vec tor  bundles 

c : skT@® E - -~  Jk(E) 

such that the sequence  of vec tor  bundles 

(4. I) 0 skT~® E ¢ ~7k-I --~ * Jk(E) ~ Jk_l(E) --~ 0 

i s  exact.  We reca l l  that ¢ is  wel l -def ined in the following way : for 

and functions f l  . . . . .  fk of X in ~ and vanishing at x , we have 

e (dfl, x" "'" "dfk, x ® s (x)) = jk(fl.., fk s) (x) . 

In the left member of the above equality, dfl,x.....dfk, x 

If U ¢: X is an open set of coordinates (identified with a subset of ~{n) and triviali- 

zing for the bundle E , then we have isomorphisms 

Jk(E)l U =. Jk(U ,~m) , 

(IR ,IR m) ~skT~® E x 6 U 
X ~ 

Moreover, via these isomorphisms, the sequences (I.i) and (4. I) at x £U are the 

same. 

x6 X, s £C~(E) 

Let F be another vector bundle of rank p over X , and 

P : C ~(Z) --.- C ~(F) 

he a linear differential operator of order k . For ~ ~ 0 , we consider the morphism 

of vec tor  bundles 

P~(P) : Jk+~(E) -'-~Js(F) 

sending jk+~(s)(x) on je(Ps)(x) , for all x 6 X and s 6 C~(E) • We set 

= R k = Ker p0(P) and Rk+ ~ Ker p~(P) . 

We say that R. is the linear differential equation of order k associated to P and 
th k 

Rk+ ~ its e -prolongation. 

The symbol mapping of P is the morphism 
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o(P) : skT*® E ---~F 

of vector bundles obtained by restriction of p0(P) . In the same way, for 

£th-prolongation of o(P) is the morphisrn 

oe(P ) : sk+£T~®E ~ S£T*®F 

obtained by restriction of pc(P) . The kernel Ker o(P) is the symbol 

and gk+£ = Ker o£(P) its £th-prolongation. 

£ > 0 , the 

gk of R k 

If we r e s t r i c t  our attention to an open se t  of coord ina tes  in X , t r iv ia l iz ing for E 

and F , we r ecove r  all the objects  in t roduced in the pa rag raph  2. 

Now, we can develop the formal  theory as in pa rag raph  2. For  example,  the d iagram 

(2.2) becomes  the following exact and commuta t ive  d iagram 

(4.2) Rk+ 1 

I! k 

o1(P) 
sk+IT* ® F ~ T-~®F 

I ¢ pl(p ) I e 

Jk+l (E) . JI(F) 

ITTk p0(p ) 1 TTO 

Jk(E) D F 

~ K ---~0 

of vector bundles, where K = Coker oI(P ) 

want to compute the morphism ~ : R k ~ K 

the sequence 

and 'r is  the canonical  project ion.  We 

, given by d i ag ram-chas ing  and such that 

Rk+ I ~ R k J K 

is exact. We begin by the 

LEMMA 4.1. - Every connection V on the vector bundle 

of the sequence 

~0 
0 _ . ~ T ~ ® F  e JI(F ) * F - - - ~ 0  . 

F defines a splitting 

This splitting is nothing but p0(V) : JI(F) ~ T#® F . This lemma is very useful, 

because, in examples, there is often a natural connection on F . 
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Le t  V b e  any  g iven  c o n n e c t i o n  in  F . If 

we e a s i l y  d e d u c e  f r o m  L e m m a  4 . 1  tha t  

(4.3) fl(Jk(S)(X)) = T(VPs)(x) . 

x E X and s E C~(E) verify (Ps)(x) = 0 , 

F o r  i n v o l u t i v n e s s ,  we  s i m p l y  n o t i c e  t h a t a  q u a s i - r e g u l a r  b a s i s  fo r  t he  s y m b o l  gk,  x a t  

x E X  , i s  a b a s i s  of  the  t a n g e n t  s p a c e  T and  no m o r e  of a f i xed  v e c t o r  s p a c e  a s  in  
x 

p a r a g r a p h  2. Wi th  t h i s  r e m a r k ,  al l  t h e  d e f i n i t i o n s  c a n  b e  e a s i l y  t r a n s p o s e d .  

F i n a l l y ,  we c a n  a l s o  e a s i l y  g i ve  an  i n t r i n s i c  f o r m a l i s m  fo r  a non  l i n e a r  o p e r a t o r  

P : C ~ E )  ~ C~(F)  . W e  s i m p l y  no t i c e  tha t  t he  b u n d l e s  E and  F a r e  on ly  f i b r a t i o n s ,  

s o  t he  n o t a t i o n s  c a n  b e  m o r e  c o m p l i c a t e d .  F o r  i n s t a n c e ,  we h a v e  to c o n s i d e r  t he  v e r t i -  

ca l  b u n d l e s  V(E) and  V(F)  of  E and  F . 

5. - THE EINSTEIN E ~ I : A T I O N S .  

We  s u p p o s e  tha t  X i s  m a n i f o l d  of d i m e n s i o n  n > 3 . If q i s  a R i e m a n n i a n  m e t r i c  on 

X , we d e n o t e  by  Rie(q)  i t s  R i cc i  c u r v a t u r e ,  w h i c h  i s  a s e c t i o n  of the  b u n d l e  S 2 T  ~ 

of q u a d r a t i c  f o r m s  on X . T h e  o p e r a t o r  q ~-~ lqic(q) i s  a s e c o n d  o r d e r  n o n - l i n e a r  d i f -  

f e r e n t i a l  o p e r a t o r ,  and  we want  to s t u d y  t he  f o r m a l  i n t e g r a b i l i t y  of  the  l i n e a r i z a t i o n  

R i c '  : C ~ ( S 2 T ~  ~ CC°(S2T ~) 
g 

of  t h i s  o p e r a t o r  a l ong  a f i xed  R i e m a n n i a n  m e t r i c  g on X . We h a v e  

Ric' (h) = d Ric(g+th)it=0 , 
g 

for all h E C¢°($2T~ . 

We consider the diagram (4.2), with E = F = S2T ~ , k =2 and P = Ric' . The first 
g 

step is to determine K and 'r . Let v g = V be the Levi-Civita connection of g . 

We introduce the "divergence of symmetric tensors" which is the first order linear dif- 

ferential operator 

Div : C®(S2T ~) - - . -  C ~ T ~ )  , 
g 

g i v e n  in  loca l  c o o r d i n a t e s  by  

(Divgh)i = ~k(~h)i k • 

By using elementary representation theory of the orthogonal group, one can identify K 
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with T ~ and  

"r : T#  ® S2T ~ - - - ~  T ~ 

wi th  the  s y m b o l  o(DiVg), of the  d i v e r g e n c e .  

Le t  h E C~°(S2T ~) and  x E  X s u c h  tha t  R i c ' ( h ) ( x )  

and  (4 .3) ,  we ob ta in  

(5. l )  Q(J2(h)(x)) = (DivgRiC'gh)(x) . 

Now we r e c a l l  t he  B i a n c h i  i d e n t i t y  

(5.2)  Div Ric (q) = 0 , 
q 

wh ich  ho lds  fo r  a l l  R i e m a n n i a n  m e t r i c  q on 

t i ty ,  we e a s i l y  f ind  tha t  f2 = 0 i f  and  only  i f  

s o l u t i o n s  of o r d e r  2 of R ic '  
g 

t r i c  g i s  R i c c i - f l a t .  

= 0 . According to Lemma 4.1 

X . If we "linearize" the Bianchi iden- 

Ric(g) = 0 . Thus, we can extend formal 

to formal solutions of order 3 , if and only if the me- 

Next, one can prove that, for x E X , every orthonormal basis of T x , with respect 

to g , is quasi-regular for the symbol g2, x of Rie'g at x . The computations for 

involutivness at x depend only of the value of g at x , and therefore are independent 

of the choice of the metric. In fact, with local coordinates, they can be done in the 

standard Euclidean space. 

F i n a l l y  R ic~  i s  f o r m a l l y  i n t e g r a b l e  i f  and  only  i f  Ric(g)  = 0 . M o r e  g e n e r a l l y ,  we 

c a n  c o n s i d e r ,  fo r  )~ E ~  , the  o p e r a t o r  

pk : C ~ ( S 2 T ~  ~ C~(S2T ~) 
g 

h ~ Ric' ( h ) -  Xh , 
g 

which is the linearizaiion along g of the non-linear Einstein operator 

q ~--~Ric(q) - Xq . 

Here also we find that pk is formally integrable if and only if g 
g 

Einstein equations 

Ric (g) = kg . 

Moreover, in this case, Div is the compatibility condition of pk . 
g g 

satisfies the 

Thanks to the Bianchi identity for the Ricci tensor, the non-linear Ricci curvature (or 



35 

Einste in)  opera to r  is  i t s e l f  f o rma l ly  in t eg rab le .  F r o m  this  obse rva t ion ,  we can  obtain 

the following r e s u l t .  

IR n R 0 Let  go be  a s c a l a r  product  on and be  a ( 0 , 4 ) - t e n s o r  at the or ig in ,  and 

having the s y m m e t r i c s  of a c u r v a t u r e  t e n s o r .  Suppose that  

ik 0 
(5.3) go Rijk~ = )'(g0)j e ' 

for  )~ E 1R . Then t h e r e  ex i s t s  an E ins te in  m e t r i c  g ,  defined in a neighborhood of the 

or igin  s uch  that 

a) Ric(g) = )~g ; 

b) g(0) = go ; 

e) the R iemann  c u r v a t u r e  t ensor  of g at the or ig in  i s  R 0 . 

In o ther  words ,  t h e r e  i s  no obs t ruc t ion  to extend the a lgebra ic  E ins t e in  condi t ion (5.3) 

to g e r m s .  For  i n s t ance ,  when n ~ 4 , Ricci  flat  m e t r i c  a r e  gene r i ca l l y  non flat .  

R e m a r k .  The fact  that the opera tor  Ric is  f o r m a l l y  i n t eg rab l e  m e a n s  only that  the 

equation Ric(g) = 0 is  local ly  so lvable  and no._...tt that  Ric(g) = S is  so lvab le  for  any 

given S . D. De Turck  ha s  p roved  that this  l a s t  equat ion is  so lvab le  in a ne ighborhood 

of a point x of X , if and only if S(x) i s  a n o n - d e g e n e r a t e  quadra t i c  f o r m .  

M. Dubois -Viole t te  has  e tab l i shed  the s a m e  s o r t  of r e l a t i ons  be tween the Yang-Mi l l s  

equat ions  and thei r  l i n ea r i z a t i ons .  One can  a l so  p rove  that  the non - l i ne a r  Yang-Mi l l s  

equat ions a r e  f o rm a l ly  in t eg rab le .  
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~ ~ i  Quantum integrability and classical integrability are 

studied fro~ an algebraic viewpoint. In particular we discuss the 

p~ob,lem of constructing a quantum integrable syste~ when a classically 

integrable syste= is given. 

1 INTRODUCTION 

I n t e g r a b l e  dynamical systems have been s tud ied  q u i t e  a c t i v e l y  in  the 

recents  years.  Most of the t ime the system has been a c l a s s i c a l  one. 

Here we w i l l  d iscuss the d i f f e r e n c e s  of c l a s s i c a l  and quantum 

i n t e g r a b i l i t y  from an a l g e b r a i c  v i ewpo in t .  (For more d e t a i l s  see 

[ 1 ] . )  

Let us s t a r t  by d e f i n i n g  the type of systems tha t  w i l l  be s tud ied .  

The concepts t h a t  w i l l  be in t roduced w i l l  work f o r  any d i s c r e t e  

N-dimensional Hami l ton ian systems. However~ most of our examples w i l l  

be from two-dimensional  systems, and t y p i c a l l y  of the form 

H ,, ½(Px 2 + py2) + V(x, ' / )  (1) 

In the l i t e r a t u r e  there  are many d e f i n i t i o n s  f o r  i n t e g r a b i l i t y  so 

l e t  us next agree on the d e f i n i t i o n  t ha t  w i l l  be used: 

D e f i n i t i o n  A Hami l tonian system of N degrees of freedom i s  c a l l e d  

integrable i f  there  a N-1 g l o b a l l y  de f ined ,  independent 

funct ions~ which commute w i th  each o ther  and w i th  the Hami l ton ian 

w i th  respect  t o  the Poisson b r a c k e t ~ i . e  

{H, l l }~n=O, i = 2 , . . . , N  

{ I i , I j } ~ s = O ,  i , j = 2 , . . . , N  
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The I ~ s  of  t he  above d e f i n i t i o n  a re  v a r i o u s l y  c a l l e d  cons tan t s  o f  

~otion,invarianCs, o~ integ?als of mo,tion. The term c o n s t a n t  o f  

mot ion might be most a p p r o p r i a t e  as i t  s t r e s s e s  t he  f a c t  t h a t  I~ can 

t a k e  any cons tan t  v a l u e ,  determined by the  i n i t i a l  c o n d i t i o n s ,  and 

t h a t  i t s  v a l u e  w i l l  s t a y  cons tan t  on the  t r a j e c t o r i e s .  

The above d e f i n i t i o n  was f o r  c l a s s i c a l  mechanics. W h a t  about  

quantum mechanics? Of course c l a s s i c a l  and quantum mechanics d i f f e r  

in  many ways and some concepts  cannot be used in  bo th .  In the  

a l g e b r a i c  sense t hey  a re  q u i t e  c l o s e  t o  each o t h e r  so t h a t  the  above 

a l g e b r a i c  d e f i n i t i o n  o f  i n t e g r a b i l i t y  can be t r a n s p o r t e d  t o  quantum 

mechanics w i t h o u t  any d i f f i c u l t y :  

D e f i n i t ~ o o E  A quantum mechanical Ham i l t on ian  system i s  c a l l e d  

quantum integrable i f  t h e r e  a re  N-I  independent ,  g l o b a l l y  d e f i n e d  

o p e r a t o r s ,  commuting w i th  each o t h e r  and t he  H a m i l t o n i a n ,  i . e .  

[H , I~ ]=O,  i = 2 , . . . , N  

[ I ~ , l ~ ] = O ,  i , ~ = 2 , . . . , N  

Suppose then t h a t  we a re  g iven a c l a s s i c a l l y  i n t e g r a b l e  system, f o r  

example a Hami l t on ian  o f  the  t ype  (1) ,  and t he  r e q u i r e d  second 

i n v a r i a n t  I .  We nex t  make the  usual o p e r a t o r  s u b s t i t u t i o n s  f o r  the  

momenta and ge t  o p e r a t o r s  H and I ( f o r  I we cou ld  have o r d e r i n g  

a m b i g u i t i e s ! ) .  Do we now have [H , I ] =O  ? Not a lways,  a l t hough  t h a t  has 

been c la imed.  In t he  f o l l o w i n g  we s h a l l  d i scuss  t he  v a r i o u s  problems 

t h a t  we are  faced w i th  when we t r y  t o  c o n s t r u c t  a quantum i n t e g r a b l e  

system from a c l a s s i c a l l y  i n t e g r a b l e  one. 

2 QUANTUM MECHANICS WITH C-NUMBERS 

In the  f o l l o w i n g  we w i l l  most ly  be doing quantum mechanics w i th  

c-number f u n c t i o n s  r a t h e r  than w i th  o p e r a t o r s .  There a re  two reasons 

f o r  doing i t  here :  1) Since we are  comparing c l a s s i c a l  and quantum 

mechanics i t  i s  u s e f u l  t o  have s i m i l a r  o b j e c t s  in  bo th ,  2) f o r  

computer a l g e b r a  systems, where many o f  t he  necessary  computa t ions  

were done, i t  i s  more conven ien t  t o  have commuting o b j e c t s .  

We a re  here  o n l y  i n t e r e s t e d  in  a l g e b r a i c  aspec ts  o f  quantum 

mechanics and t h e r e f o r e  we o n l y  need a rep lacement  f o r  t he  o b j e c t s  

( o p e r a t o r s )  and f o r  the  o n l y  a l g e b r a i c  o p e r a t i o n  between them 

(commutator) .  There a re  m a n y  isomorphisms t h a t  cou ld  be used 
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(corresponding l o o s e l y  speaking to  va r ious  o rder ing  ru les )  of which we 

w i l l  on ly  use the Weyl-Wigner r u l e .  The same r e s u l t  i s  obta ined using 

s t a r - p roduc t s .  

In any t r ans fo rma t i on  r u l e  (def ined by a f unc t i on  F(x ,y)~ see E2]) a 

c-number f unc t i on  A(p,q) i s  t r a n s l a t e d  i n t o  an opera to r  ~(9, Q) using 

the ( formal)  i n t e g r a l  

A(p ,q) = Jdnpdnqdnxdny (2:t~) "2nF (x ,y)A (p, q)exp (~(xEp-p) +y.(q-q) ) (2) 

In the Weyl r u l e  F(x ,y)=1 and f o r  the standard o rde r ing  r u l e  (p ' s  t o  

t he  r i g h t )  F ( x , y ) = e x p ( - i x y / 2 ~ ) .  

The eas ies t  way to  ob ta in  the inverse  t r ans fo rma t i on  i s  f i r s t  t o  

w r i t e  the opera to r  in the standard o rder ing  and then rep lace  a l l  

ope ra to rs  p, q by c-numbers p, q. The c-number f u n c t i o n  Am obta ined 

t h i s  way i s  the "standard o rder ing  r u l e "  r ep resen ta t i on  of the given 

ope ra to r .  To ob ta in  the "Weyl r u l e "  ve rs ion  Aw of the same opera to r  

one uses the t rans fo rma t ion  

~2 
Aw(p,q)" expI'--~ 2 ~ ~ )  As(P'q) 

The major reason f o r  using the Weyl r u l e  i s  t h a t  the associated 

replacement f o r  the commutator, the Moyal b racke t ,  i s  q u i t e  

convenient .  I t  i s  def ined by 

2. n~ ~ (~'q'~P ~'P'~q)l B(p,q) {A,B}MB = k(p,q) ~" si ~. (3) 

F i r s t  of a l l  note t h a t  the Moyal bracket  reduces t o  the Poisson 

bracket  when /~ -~ O. Another p rope r t y  of cons iderab le  importance i s  

t h a t  both brackets respect  t ime reve rsa l  p a r i t y .  I f  the Hami l ton ian 

i s  even in  momenta (e.g.  (1)) then t h i s  p a r i t y  conserva t ion  imp l i es  

t ha t  both the c l a s s i c a l  and quantum c-number i n v a r i a n t s  w i l l  a lso  have 

a d e f i n i t e  p a r i t y ,  i . e .  they w i l l  be e i t h e r  even or odd in  p. 

3 AUTOMATIC EXTENSION FROM CM TO QM 

The Moyal and Poisson brackets  g i ve  d i f f e r e n t  r e s u l t s  on l y  i f  the 

h igher  order  terms in (3) c o n t r i b u t e .  I f  the Hami l ton ian i s  of type 
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(1) then in  the  h i ghe r  o rde r  terms a l l  x - d e r i v a t i v e s  must o p e r a t e  on V 

and t he  p - d e r i v a t i v e s  on I .  In p a r t i c u l a r  i f  t he  i n v a r i a n t  i s  a t  most 

second o r d e r  i n  momenta the  h i g h e r  o r d e r  terms in  t he  Moyal b r a c k e t  do 

no t  c o n t r i b u t e  a t  a l l ,  and in  t h a t  case c l a s s i c a l  i n t e g r a b i l i t y  does 

imp ly  quantum i n t e g r a b i l i t y .  For example t he  f o l l o w i n g  c l a s s i c a l l y  

i n t e g r a b l e  system i s  a l s o  quantum i n t e g r a b l e  and t he  c-number 

r e p r e s e n t a t i v e  o f  t he  quantum second i n v a r i a n t  i s  i d e n t i c a l  t o  the  

c l a s s i c a l  one. 

H = ½(Px 2 + py2) + 2x 3 + xy2 

I = Py(YPx - Xpy) + x2y 2 +.j~.y4 

The c l a s s i c a l  i n v a r i a n t  can be used as the  c-number quantum 

i n v a r i a n t  a l s o  i n  some o t h e r  cases. For example i n  systems whose 

c l a s s i c a l  i n t e g r a b i l i t y  f o l l o w s  from the  e x i s t e n c e  o f  a Lax p a i r  i t  

t u r n s  out  t h a t  t he  v a r i a b l e s  appear i n  such comb ina t ions  t h a t  a l s o  

quantum i n t e g r a b i l i t y  can be ob ta ined  C3]. 

As an example c o n s i d e r  the  Toda l a t t i c e  whose Hami l t on ian  in  t h r e e  

d imens ions reads  

H = -,}(px 2 + py2 + Pz 2) + eX-Y + ey- z + eZ- x (4) 

I t s  i n v a r i a n t s  f rom a Lax p a i r  a re  

1 I = Px + Py + Pz 

12 = PxPy + PyPz + PzPx - ex-y " eY-Z - eZ-X 

13 = pxPyP z - PxeY "z - pye z'x . pzeX'Y 

(5) 

The l i n e a r  and q u a d r a t i c  i n v a r i a n t s  (which can be combined t o  make 

the  Ham i l t on i an )  work a l s o  in  quantum mechanics due t o  the  above 

ment ioned genera l  arguments. In t h i s  case a l s o  t h e  cub ic  i n v a r i a n t  

commutes w i t h  the  o t h e r s  i n  the  sense o f  Moyal.  Th is  t ime the  p term 

does not  c o n t r i b u t e  due t o  i t s  s p e c i a l  form ( t he re  a re  no 

co r recpond ing  p roduc t  terms xyz in  the  p o t e n t i a l ) .  

For many systems i t  i s  t h e r e f o r e  t r u e  t h a t  c l a s s i c a l  i n t e g r a b i l i t y  

i m p l i e s  quantum i n t e g r a b i l i t y  w i t h o u t  any problems. However, t h i s  i s  
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not  always t r u e  and in  the  f o l l o w i n g  s e c t i o n s  we w i l l  g i v e  examples 

where the  s i t u a t i o n  i s  no t  so s imp le .  

4 QUANTUM CORRECTIONS TO THE SECOND INVARIANT 

When t he  i n v a r i a n t  i s  s u f f i c i e n t l y  comp l i ca ted  t he  h i g h e r  o r d e r  

terms in  t he  Moyal b r a c k e t  do c o n t r i b u t e .  As an example c o n s i d e r  t he  

f o l l o w i n g  Hami l t on ian  

½(Px 2 py2) 16 y3 -2 H = + + ~ + x y  2 + ~ x  (6) 

I t  i s  c l a s s i c a l l y  i n t e g r a b l e  and i t s  second i n v a r i a n t  i s  

4 3  P _ 4 4 2  8 2 6  Icl = Px 4 + 4(x2y + ~x'Z)px2 " 3 ~ Px y ~ y + ~ y  ~ + 4~2x'4 (7) 

I f  we now c a l c u l a t e  t he  Moyal b racke t  between (&) and (7) i t  does 

not  van ish  but  an ~ 2 - t e r m  w i l l  remain.  To c o r r e c t  t he  s i t u a t i o n  l e t  

us t r y  a mod i f i ed  i n v a r i a n t  

lqu = Icl +J~ZD(x,y) (8) 

The e q u a t i o n s  f o r  D t h a t  f o l l o w  f rom {H, Iq}MB=O a re  s imp ly  

D = O, 
Y 

D = 24x'5~ x 
(9) 

Thus we can s o l v e  f o r  D and o b t a i n  the  c-number quantum i n v a r i a n t  

lq u = Ic I -..1~26~x -4 (10) 

A s i m i l a r  s i t u a t i o n  appears w i th  many o t h e r  i n v a r i a n t s .  U s u a l l y  the  

c o r r e c t i o n  terms a re  necessary  o n l y  f o r  the  lower  o r d e r  terms in  p. 

For f u r t h e r  d e t a i l s  see [ 1 ] .  

There a re  s e v e r a l  methods by which one can t r y  t o  change the  

~ 2 - t e r m s  in  the  i n v a r i a n t .  For example one cou ld  t r y  t o  l ook  a t  t he  

same o p e r a t o r  in  d i f f e r e n t  o r d e r i n g  r u l e s .  Another method i s  adding 
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powers of  t he  Ham i l t on i an  t o  the  i n v a r i a n t .  Note t h a t  the  c-number 

r e p r e s e n t a t i v e  of  H ~ i s  not  H ~ bLlt t h e r e  w i l l  be a d d i t i o n a l  --~ 

c o r r e c t i o n s .  Both of  these w i l l  change the  c o r r e c t i o n  term D 

d iscussed above~ however~ t h e r e  i s  no un ique o r d e r i n g  r u l e  where a l l  

c-number r e p r e s e n t a t i v e s  a re  w i t h o u t  such quantum c o r r e c t i o n s .  

5 DEFORMATIONS NEEDED IN THE HAMILTONIAN 

Even these c o r r e c t i o n s  t o  the  second i n v a r i a n t  a re  not  a lways 

s u f f i c i e n t  t o  make a c l a s s i c a l l y  i n t e g r a b l e  system quantum 

i n t e g r a b l e .  As the  by now s tandard  example l e t  us t ake  the  H o l t  

H a m i l t o n i a n  

Hc I = ½(Px 2 + py2) + ~ x4/3 + y2x-2/3 (11) 

which i s  c l a s s i c a l l y  i n t e g r a b l e  w i t h  the  second i n v a r i a n t [ 4 ]  

3 2 (+4 /3  3x-Z/3y2)p,/ 9xl/3yp x ic I = py3 + ~PyPx + + + (12) 

I f  we now t r y  a second i n v a r i a n t  w i t h  the  same l e a d i n g  p a r t  i t  t u r n s  

ou t  t h a t  the  new system of  equa t i ons  has no s o l u t i o n .  

Le t  us nex t  t r y ~  ~ c o r r e c t i o n s  f o r  both the  second i n v a r i a n t  and t he  

H a m i l t o n i a n ,  i . e .  

Hq u = Hc I +~2 A(x,y) 

lq u = ic I +~2( B(x,y)p x + C(x,y)py ) (13) 

The equa t i ons  f o r  A,B and D f o l l o w i n g  from {H,I}MB=O are  now 

2B = 3Ay 
x 

C x + By = 3Ax, 

Cy =, 3Ay, 

3Axx Y + 2Ayyy - 8AxB - 8AyC =0, 

+ + . 2 -I 2- ~x'2y =0 9xyA x + (-"}x 2 3y2)Ay %yC + (x ~'x y }B - 
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and they  can indeed be so lved  w i th  the  f i n a l  r e s u l t  

Hqu = H c l  - .~., f i2x-2 ' 

5 .,,2 -2 Iqu = Icl - -~ ,n  x py. 
(14) 

C a l c u l a t i o ~ s i m i l a r  t o  the  above can be c a r r i e d  ou t  w i th  the  o t h e r  

H o l t  p o t e n t i a l s  whose i n v a r i a n t s  a re  o f  o r d e r  4 and 6 i n  p. A lso  i n  

these  cases we have found t h a t  t he  c o r r e c t i o n  term t o  the  Hami l t on ian  
2 -9  

i s  the  same, - 5 / 7 2 ~  x ~ 5 ] .  

Another example o f  t h i s  t ype  i s  the  Fokas-Lagers t rom p o t e n t i a l  

Hc l = ½(Px 2 + py2) + (xy ) -2 /3  (15) 

which i s  c l a s s i c a l l y  i n t e g r a b l e  [ 6 ] .  For quantum i n t e g r a b i l i t y  t he  

p o t e n t i a l  must be deformed by [ 7 ]  

Hqu = Hcl . 5 ~ 2 ( x ' 2  + y-2) 

and then t he  second i n v a r i a n t  i s  

lqu = PxPy(XpY'YPx-) + 2(xy)'2/3(XPx'YPy) - 3--~2(xy-2p× " yx-2py) (17) 

I t  i s  q u i t e  s u r p r i s i n g  t h a t  the  d e f o r m a t i o n s  (14) and (16) a re  of  

t he  same t ype ,  i n c l u d i n g  numer ica l  f a c t o r s .  A lso  the  c o r r e c t i o n  seems 

t o  be a s s o c i a t e d  w i t h  t he  v a r i a b l e  t h a t  appears w i th  a f r a c t i o n a l  

power in  the  r e s t  o f  t he  p o t e n t i a l .  Th is  led us t o  t r y ,  w i t h o u t  

success,  t o  e l i m i n a t e  the  c o r r e c t i o n  term by a c a n o n i c a l  p o i n t  

t r a n s f o r m a t i o n s  [ I ]  which a re  a l s o  known t o  produce 4 2 c o r r e c t i o n s .  

Recen t l y  we have been ab le  t o  s o l v e  t h i s  i n t r i g u i n g  q u e s t i o n  by 

a p p l y i n g  a canon i ca l  t r a n s f o r m a t i o n  t o g e t h e r  w i t h  a change in  the t i ~ e  

vamiable [ 8 ] .  I t  t u r n s  out  such a combined t r a n s f o r m a t i o n  e l i m i n a t e s  

the  quantum d e f o r m a t i o n  and t u r n s  the  system i n t o  ano the r  one which i s  

i n t e g r a b l e  w i t h o u t  any quantum d e f o r m a t i o n s  in  the  p o t e n t i a l .  What  i s  

r e a l l y  s u r p r i s i n g  i s  t h a t  the  H o l t  p o t e n t i a l s  a re  t h i s  way t r ans fo rmed  

i n t o  the  we l l  know i n t e g r a b l e  Henon-He i les  p o t e n t i a l s !  
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6 CONCLUSIONS 

We have here seen t ha t  quantum i n t e g r a b i l i t y  i s  by no means a 

t r i v i a l  consequence of c l a s s i c a l  i n t e g r a b i l i t y .  We have observed in 

examples th ree  basic  types of behav io r :  1) The c l a s s i c a l  i n v a r i a n t  can 

be taken as the c-number quantum i n v a r i a n t ~  2) the c l a s s i c a l  i n v a r i a n t  

must be modi f ied  by ~2 terms~ 3) a lso  the Hami l ton ian must be 

deformed. We would l i k e  t o  emphasize t h a t  t he re  i s  no way t ha t  the 

quantum deformat ions could a l l  be exp la ined  by an o rde r ing  r u l e  

( i n c l u d i n g  the s t a r  p roduc t ) .  

I t  i s  easy t o  imagine many other  types of behav io r  when a c l a s s i c a l  

system i s  quantized~ however~ a l l  known models w i th  polynomial  ( in  

momenta) i n v a r i a n t s  f i t  i n t o  the th ree  c a t e g o r i e s  above. Recent ly  

some c l a s s i c a l  models w i th  r a t i o n a l  or t ranscendenta l  i n v a r i a n t s  have 

been found [9]~ but i t  i s  s t i l l  open whether a quantum vers ion  of 

thesetmodels can be cons t ruc ted .  
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BACKLUND TRANSFORMATIONS FOR NONLINEAR FIELD EQUATIONS* 
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I. Introduction. 

B~cklund transformations, first discovered a century ago by A. V. 

B~cklund EIJ, have been found to be of renewed interest in recent 

years due to the discovery of solitons (E23~; see also EI9J for 

example). However, finding such transformations is difficult. 0nly 

one even partly systematic method for finding B~cklund transformations 

is known, that due to Wahlquist and Estabrook ~20, 211. This method 

will be discussed here, along with various generalizations. 

A B~cklund transformation (BT), or strictly speaking an auto- 

B~cklund transformation, will be taken here simply to mean a set of 

auxiliary equations, associated with a field equation (or set of field 

equations), such that one solution of the field equation may be used 

to generate a second solution, usually by means of integration or 

solving a simple differential equation. (See ~3~ for example.) A 

well-known example is the BT for the sine-Gordon (s-G) equation ~15~, 

~uv = sin~ (I) 

which is 

@u' = ~u + 2k-I sin_2 !(~' + ~) 

~v' -$v + 2k sin ~(~' - ~) (2) 

where ~ and ~' are solutions of Eq. (I), k is a constant, and 

subscripts mean partial derivatives. It is clear that, if ~ is known, 

then it is in principle possible to solve these equations for ~'. 

While BT's are known for only a small number of field equations, 

and probably do not exist for most partial differential equations, 

they still have attracted much interest. Field equations admitting 

BT's are often nonlinear, with no other systematic means of solution; 

they may occur in a rather wide variety of contexts; and they may 

serve as simple approximations for other equations. Thus BT's are 

important for their study. 

*This paper is based on work supported by the National Science 
Foundation under grant PHY-8308055. 
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2. Differential equations as differential forms. 

The Wahlquist-Estabrook (WE) method K20, 21S requires one to find 

a function (or functions), called a pseudo~0otential. This is then 

used as an auxiliary function in equations for a new solution of the 

given field equation(s), in terms of the old one, and provides just 

the freedom needed in that search. Finding the pseudopotential may be 

done with traditional mathematics, but it is useful and instructive to 

work in differential forms. Accordingly, we first discuss writing 

differential equations as differential forms. Since this is discussed 

elsewhere [14, 12S, we merely write the s-G equation in this manner. 

In Eq. (I), we put r = ~u" Then r v = sin@. We now write two 2- 

forms in a space with variables u, v, r, and ~: 

= d~^dv - rdu~dv (3) 

6 = dr~du - sine dvAdu 

If we restrict these forms to a solution of Eq. (I), then we have 

r = r(u, v) and ~ = ¢(u, v) (restriction to a space with only 

parameters u, v), and 

= (¢u- r) duAdv 

6 = (r v -sin¢) dvAdu 

which vanish by the field equations. Thus Eq. (I) is equivalent to 

requiring • = 6 = O ("annulling" a and 6) when restricted to uv-space. 

Alternatively, we could define a set of l-forms ~i: 

~I = du ~2 = rdu ~3 = sin~ dv ~4 = cos~ dv (4) 

We note that 

~i~2 = ~3A~4 = 0 (5) 

identically, and that d~ I = 0, d~ 2 = 6 + ~3A~¢, d~ 3 = ~cos@ + ~2A~4, 

and d~ 4 = -~sin@- ~2A~ 3. Thus, when a and 6 are annulled, we have 

d~ I = 0 d~. 2 - ~3A~.I = 0 (6) 

d~3 - ~2A~4 = 0 d~4 + ~2A~3 = O. 
Eqs. (5) and (6) form an alternate set of 2-forms, which may be used 

to recover Eq. (I). 

We denote the set of forms which are equivalent to the field 

equations by I (an "ideal" of forms). In the above case, I is 

alternatively taken to be ~ and 6, or to be the forms in (5) and 

(6). If I may be constructed from a set of l-forms ~i, i = I to K, 

with constant coefficients ("CC"), as in (5) and (6) above, we may 

call it a "CC ideal" [11]. 

The KdV equation 

u t + 12uu x + Uxx x = 0 (7) 

can be written as the vanishing of three 2-forms 
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~I = du~dt - zdx^dt 

a 2 = dz^dt - pdx^dt (8) 

~3 = -du^dx + dp~dt + 12uz dx^dt 

(z = Ux, p = Zx, u t = -12uz - Px), or as the vanishing of a set of 

thirteen 2-forms constructed from a set of seven l-forms ~i [5, 21]. 

The equation of general relativity [4, 7, 9, 11] 

(ReE) V2E = (rE) 2 ' (9) 

(Ernst equation when k = -I, cylindrical wave equation when k = +I), 

where 

V2E = Err + S -I(SrE r + SzE z) + kEzz, 

(VE) 2 = Er2 + kEz 2, 

and S satisfies 

Srr + kSzz = O, (10) 

may be written 

d(Sf -I * dr) + Sf -I d¢A* d@ = O (11) 

d(Sf -2 * de) = 0 

and (10) is 

d(*dS} = 0 (12) 

where E = f + i¢ and * is a linear Hodge operator defined by *dr = dz, 

• dz = ),dr. f and ~ are metric coeffients and @ is defined by *d@ = S-If2dm. 

We define R and n by the equations * dS = dR and * df = 8-1f(dn + ~d¢). 

Then define a set of l-forms ~i: 

~I = f-ld¢ ~4 = f-ldf 

~2 = S-IFd~ ~5 = s-ldS (13) 

~3 = S-1(d~ + ~d@) ~6 = S-IdR 

We can write a set of equations for the d~ i (d~ I = ~IA~4 , etc.) and a 

set which are to be annulled (~3A ~I - ~21~. ~4 = O, etc.) but it is 

perhaps more interesting to define l-forms ~i as follows, where k = Vk 

(=I ori} 

~I(2) = ~4 ± i~I + k~3 ± ik~2 

~3(4) = ~4 ; i~I - k~3 ± ik~2 (14) 

D5(6) = ~5 ± k~6 
where the subscript in parentheses goes with the lower sign. Then, 

identically [11]: 

4d~I = nIA (~3 + ~6 - n4) - n4An5 

4d~2 = n2#%(S4 + n6 - ~3 ) - n3W% ~5 

4dn3 = n3A(nl + n5- n2 ) - ~2#%n6 (15) 

4dn 4 m n4A(n2 + n5- nl ) - nII% n6 

2d~5 = -2dn6 = ~5#%n6 
and the annulling of the following 2-forms yields the field equations: 
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"ql •'q2, "nl~ ',15 , -n2,~ n 5 (= O) (16) 
• q3 ~ "q4, "q3,A r16, q4~ r16 (= O) 

3. Search for a pseudopotential. 

If a particular l-form is an exact differential, given that a set 

of field equations is satisfied, we say that it defines a potential. 

For example, for the s-G equation, the quantity ¢, where @u = r2 

(= Cu 2) and Cv = -2c~os¢, is a potential, since (¢u2)v = (-2cos¢) u by 

means of the field equation (I). In terms of forms, we would write 

e = r2du- 2cosCdv (17) 

and note that 

de = 2r6 + 2sine 

so that, since I = {~, 6}, 

de = 0 (mod I) (18) 

Thus we could write e = de--which defines the potential ¢. Eq. (17) 

would become 

= - de + r2du - 2cosCdv (19) 

where ~ = 0 would define ¢. 

If we wanted to search for a potential, we would write 

e = F(r, ¢)du + G(r, ¢)dv (20) 

and require (18). That would give 

de = (Frdr + Fcd¢)Adu + (Grdr + Gcd¢)A dv 

= Fr(6 + sinCdv A du) + Fcd¢~du 

+ Grdr•dv + G¢ (e + rdu• dv) 

and de = 0 (rood ~, 6) would yield 

G r = F¢ = rG¢- sinCF r = O. (21) 

Solution gives Eq. (17), after we drop trivial constants. 

Wahlquist and Estabrook generalized the notion of a potential to 

allow F and G in (20) to be functions of the potential itself [21]. 

If we write this new pseudopotential as y, we write, a la (19), 

= -dy + F(r, ¢, y)dv + G(r, ¢, y)dv (22) 

and require 

d~ = 0 mod (I, e) (23) 

where now we include the modulo e requirement to allow for dy where it 

occurs. Eqs. (21) now generalize to [12] 

F¢ = G r = 0 (24) 

-Frsin¢ + rG¢ + FGy - Gl~y = O. 

As noted elsewere, the solution of these equations is 

F = rg+b 

G = csin¢ + ecos¢ (25) 

where g, b, c and e are functions of y satisfying 
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c + ge' - eg' = 0 -g + bc' - cb' = 0 (26) 

-e + gc' - cg' = 0 be' - eb' = O. 

g = 0 gives a trivial solution, so assume g ~ O. Then F and G--and ~- 

-can be divided by g and a new y can be defined by Sg -I dy. 

Equivalently, we can require g to be a nonzero constant. We choose 

g = -I, and then we get c = e', e = -c' , be' - cb' = -I, and 

be' - eb' = O. Thus c = k -I cos(y + 8) and e = -k-lsin(y + 8), where 

k and 8 are constants. We set 8 = 0 without loss of generality, note 

that we must have b = ke, and find easily that k = k 2. Putting this 

all together, we see that (22) becomes 

= -dy + (ksiny - r)du + k-Ssin(y + ¢)dv. (27) 

We generalize [12] by making y, F, and G into column vectors 

(components y~, etc.), of unspecified dimension N. The nonlinear term 

in eq. (24) then becomes a Lie bracket. If then we take F and G to be 

linear in the y~, 

F = (rA + B)y (28) 

G = (Csin¢ + Ecos¢)y 

where A, B, C and E are matrices, we find the relations 

[A, C] = -E [B, C] = -A (29) 

[A, E] : c [B, E] : O. 

Such a set of equations is called a prolon6ation structure by 

Wahlquist and Estabrook. It forms an incomplete Lie algebra but 

presumably can be expressed in terms of a Kac-Moody algebra. By 

making an Ansatz we may close the Lie algebra. The obvious one here 

is B = kE; the resulting algebra is s~(2, R). By taking a particular 

representation for the B i and by writing y2 = y1(tany/2), we get the 

l-form (27) for y. 

The prolongation structure may be obtained directly (and 

elegantly) in the CC case by writing m in terms of the l-forms (4): 

= -dy + (Bi~i)y (i summed, I to 4) (30) 

(In the general CC case, the sum would be from I to K.) Then Eq. 

(23), where I = (2-forms in (5), (6)), yields Eq. (29) immediately 

(B I = B, B 2 = A, B 3 = C, B 4 = E.) 

This suggests that Eq. (30) might be tried in other problems. 

Wahlquist has shown [22] that this approach, with the ~i mentioned 

above following Eq. (8), yields the prolongation structure and the 

pseudopotential equations for the KdV. 

If one writes the same thing 

= -dq + (B k ~k)q (k summed, I to 6) (31) 

for the Ernst equation, one also gets a prolongation structure [11]. 

However, we must now let the B k be functions of a variable (k = Wk) 
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-- [k(R + 4) - s]I/2 [k(R+ 4) + S] J/% (32) 

where £ is a parameter. (~ may be found by looking for variables 

invariant under scale changes and translations which leave Eqs. (9) 

and (10) invariant.) We may set B 5 = B 6 = 0. Application of the 

procedure yields matrix differential equations for the Bk(c), which 

are easily solved to yield 

B I = at + b B 2 = c~ + d (33) 

B 3 = c~ -I + d B 4 = a~ -I + b 

where a, b, c, d are Constant matrices satisfying 

4[a, d] = 4[b, a] = a 

4 [ c ,  b]  = 4 [ d ,  c] = c (34)  

4[a, c] + 4[b, d] = b - d 

Closure once again yields the s£(2, R) algebra. 

We now choose a representation (the simplest is 2 × 2, N = 2) and 

evaluate the B i from (33). Then Eq. (31), with ~ = O, may be 

integrated to obtain pseudopotentials q~. In 2 × 2 case, a single 

potential q = q2/ql may be defined; since Eq. (31) is linear, the 

equation for q is a Riccati equation [7, 17]. We may reduce the 

number of dependent variables from N to N - I, in the general case, by- 

considering just the ratios of the q~ in this manner. 

4. Search for a B~cklund transformation. 

Our knowledge of the pseudopotentials (once again, denote them by 

y~) now provides us with extra freedom in the search for a B~cklund 

transformation. We express new dependent variables as functions of 

the old ones and of the y~ and require them to satisfy the ideal I. 

In the CC case, when all forms may be expressed in terms of l-forms 

~i, we simply write (sum from I to K) [12] 

~i' = Ai k ~k (35) 

where the Aik are functions of the y~, and require the ideal I to be 

annulled for the ~i' as well as the ~k. Solving for the Ai k then 

gives us the BT. 

We will need to evaluate the d~i'. 

d~ i' = dAik/k~k + Aikd~ k. 

We have, by (30) 

dAik = A k, ~dy ~ 

A~, ~ (B4)~v ~4y v, 
where sums on Greek indices run from I to N and those on Latin indices 

run from I to K. Thus 

d~i' = v£(Ai k) ~£/~k + Aik d~ k (36) 
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where v~ = yV(B~)~ v 818Y~. (37) 

(We can show, under the correspondence (37) between the matrix B ~ and 

the operator v ~, that [B ~, Bm] ÷ -[v ~, vm].) 

For the s-G equation, with I given by (5) and (6), (35) becomes 

~I' = a~1 + b~2, ~2' = c~I + e~2, ~3' = f~3 + g~4' and ~4 = h~3 + ~4' 
where a, ~ are functions of the y~. The expressions on the 

right hand sides of these equations were chosen so that ~I'A ~2' = 

~3'ik ~4' = 0 would follow from ~IA~2 = ~3A~4 = O. Then we require 

(from (6), for the ~i'): 

d~1' = v~(a)~AA~1 + ad~1 + vA(b) ~A ~2 + bd~2 = O. 

We use (5) and (6) and set the coefficients of the independent 2-forms 

equal to zero. That gives 

v4(a) = v4(b) = v3(b) = O, v3(a) = -b. (38) 

We have also 

d~ 2' = V£(C) ~IA~I + c d~ I + vX(e) ~IA ~ + e d~ 2 

= ~3'~ ~I' = (f~3 + g~4)/%(a~1 + b~2)' 
yielding 

v4(c) = ga, v3(c) = -e + fa, v3(e) = fb, v4(e) = gb. (39) 

Two other sets of equations also follow. We now choose a 

representation for the B ~, thus yielding explicit operators v ~. The 

sets of equations (38), (39), etc. now yield equations for the 

coefficients. It may be useful to assume that the coefficients are 

functions of only y = y2/yl (in the N = 2 case, for example). 

It may be necessary to let the coefficients A~ be functions of 

another variable, such as ~ in the Ernst case. One can generalize 

even further by including other variables; use of the variable @/f in 

the Ernst case produces apparently more general results, although they 

turn out to be compositions of known transformations [10]. 

The BT's for the s-G, KdV, and Ernst equation (and presumably 

others) may be found directly by this approach. Since they have been 

discussed thoroughly in the literature they will not be presented here 

[3, 7, I~, 17, 20, 2~]. 

5. Generalization to any number of independent variables. 

The equations discussed above have two independent variables, so 

that the ideal I is made up of 2-forms. The prolongation form ~ (see 

(22), (23) above, for example) is then a l-form, so that d~ = O(mod I, @ 

makes sense. For n independent variables, we expect I to contain n-forms 

(although exceptions occur; see the next section.) In this case, we 

follow a lead from Morris [16]. We write, if I includes forms up to 

the n th degree, 
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e = ~ A d y  + ~y ( 4 0 )  

where e is a vector of (n-1)-forms, ~ is a matrix of (n-2)-forms, y is 

a vector of 0-forms, and ~ is a matrix of (n-1)-forms. (Other choices 

are possible; for example, we could make the y~ l-forms.) We take the 

analog to Eq. (23) to be linear in e~ 

de = paw (mod I) (41) 

where p is a matrix l-form. We substitute (40) into (41) and equate 

coefficients of y and dy to 0: 

( - 1 )  n-1 ~ = p/~% - d% (mod I )  (42) 

d# = PA 

We can eliminate ~ (if desired) to get 

(dp - p~p)A % = 0 (mod I) (43) 

We now guess p and % (~ too, if desired) to be linear combinations of 

the basic forms that occur in I. Then (42) or (43) gives equations 

for the coefficients in these linear combinations. 

6. General relativity. 

The Ernst equation is found when one specializes the relativity 

equations to two, instead of four, independent variables. In other 

words, one assumes the existence of two commuting Killing vectors. If 

one of these is spacelike and one is timelike, one gets the Ernst 

equation; if they are both spacelike, then we get a cylindrical wave 

equation. Solution of the equation solves the whole problem, since 

the remaining metric coefficient is determined by quadratures. 

If there is only one Killing vector (assume nonnull), things are 

much more complicated. One can introduce an Ernst complex potential 

as before, but now one must also include equations for the other 

metric coefficients. It is most convenient to introduce three basis 

l-forms e A and their (three) associated connection coefficients ~AB; 

then one constructs equations for these, including 3-form equations. 

This problem is not solved but has been reported in the literature [8, 

12 ] .  

If there are no symmetries, then it is most convenient to use the 

already existing Caftan formalism E12, 13]. We write the metric as 

ds2 = gik ~i~ek (44) 

where the e i are basis l-forms. The sums go from 0 to 3. We take the 

gik to be constants and raise and lower indices with the metric and 

its inverse. The connection forms Qi k are defined uniquely by 

d ~k = eiA Qi k (45) 

and Qki = -Qik" (46) 
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(The last equation must be generalized if the gik are not constant.) 

The curvature forms 

eki = d~ki - ~k~^Q~ i (47) 

have components of the Riemann tensor as coefficients: 

ek i = i/2 Rkimn~mA ~n. (48) 

Integrability of (45) requires that 

~k~ ~i = O. (49) 

In order to construct the Einstein equations, one needs the Ricci 

tensor, defined by 

Rin = Rmimn • (50) 
Thus one needs to be able to extract the components of the Riemann 

tensor from (48). Eq. (48) contains six terms for each k and i, but 

one can eliminate all but one by multiplying with two selected 

l-forms, say ~i and ~: 

ekiA ~JA ~A = I/2 Rkim n ~m mnj~ ~JA ~ 

= I/2 c mnj~ Rkinm s (51) 

where cmnjA is the alternating symbol and s = ~0~ ~IA ~2 A ~3 is the 

volume 4-form. Inversion leads to 

Rk~m n ~ = I~ Cijm n ek~A~iA ~j. (52) 

The vacuum equations RAn = O, from (50), are now the 4-form equations 

gmk ~ijmn ek~A ~iA ~j = O. (53) 

We note that eki, from Eq. (47), resembles Eq. (43) if the p is 

made up of the Qk i. So we put 

p = B ik Oik (54) 

and ¢ = Ci k ~i~ ~k (55) 

in an attempt to reproduce Eq. (43). We must use Eqs. (45), (46), 

(47), (49), and (53) for our ideal I. We assume that 

(dp- PA P)A¢ = kAi ~AA ~kA eki 

+ ~An ~ijmn gkm ekXAmi ̂  ~j (56) 

where the kAi and ~An are arbitrary multipliers, to be eliminated. We 

find 

(Bkm gi~_ Bki B~m) ~kiA~ m = 0 (57) 

which leads to commutators for the B ki, showing that they are 

generators of the Lorentz group. We also have 

B ki Cmn = k[n[k~m]i] + ejAmn(~j[kgilli]) (58) 

where ~AI is not included in the antisymmetrization denoted by [ ]. 

These, when solved, are to be used in the equat ion for the 

pseudopotentials y: 

0 = [CmndY + (BikCmn + 2C[1[mSk]n]) ~i~y.]~ m n (59) 

Choice of a representation for the B ~ and solution of (58) for 

the Cmn leads to an equation (59) for y. The work done so far 
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indicates that (59) does not have a nontrivial solution for y. It may 

be that a solution exists provided we relax some of the conditions 

assumed for the procedure. 

Since this paper was presented in November 1983, it has been 

shown by F. Chinea [2] and M. G~rses [6] that the vacuum Einstein 

equations may be written as matrix 3-form equations instead of 4-form 

equations (reminiscent of Maxwell's equations). Then it is possible 

to write equations whose integrability conditions are Einstein's 

vacuum equations, including a BT, and to use them to find solutions of 

the Einstein equations. The present author is pursuing research in 

this direction [13]. 

Sanchez [18] has shown that the self dual Einstein equations with 

no symmetries, which may be written 

(j-1~yjl + ~z (j-1 ~z J) = o 
where J is a 4 × 4 complex, nonsingular matrix satisfying J~.~ = 

J~,~, admit a BT with a complex parameter y: 
j-1 j,-1 

@yJ 

8yj, = -V ~ (J-Ij,) j-1 ~z J j,-1 8z 

, = J J~, p ~, 

In summary, we know of a family of BT's for the Ernst equation 

(two Killing vectors); the problem for one Killing vector has not been 

solved; and we know of a BT for the general vacuum case (but no 

parameter appears) and for the self dual vacuum, but otherwise 

general, case (in which a parameter does appear). Whether the BT's 

for these cases are related or not is not known, but should make for 

interesting future investigation. Of perhaps greater interest is the 

question: How broad a family of solutions to Einstein's equations can 

be found using these BT's? 
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INTRODUCTION 

The aim of these notes is to provide a brief introduction to the 

subject; moreover we limit ourselves to point out the main ideas and 

results on B~cklund transformations in the particular context of the 

method based on the spectral transform. Indeed the number of papers 

produced so fa~ on B~cklund transformations is incredibly large, but 

not surprisingly so since these transformations have attracted the at- 

tention of both mathematicians and physicists, their relevance being 

well established in algebra and differential geometry as Well as in 

nonlinear optics, gravitation, gas dynamics and other fields of appli- 

cation. Only few references are quoted below, but these are sufficient 

for the interested reader to locate proofs, additional results a~d tech 

nical details. 

Examples are always a good starting point; consider the following 

three nonlinear partial differential equations: 

(I) W t + Wxx x + 3W~ = 0, W = W (x,t), 

(2) V t + Vxx x + 2V~ = 0, V = V (x,t), 

(3) ?xt =C1/2)s~n 27 , ~ = ~ (x,t), 

(subscripted variables denote partial differentiation). The remarkable 

mathematical properties, as well as the relevance in applications, of 

these evolution equations are very well known (see, for instance, [I, 

2, 3~ ); we merely recall here that i) a large class of solutions can 

be analyzed, by means of an appropriate spectral transform, in terms of 

normal modes (i.e. decoupled harm6nic oscillators) and solitonic modes 

(i.e. free particle motion), ii) £here exists an infinite set of inde- 

pendent conservation laws, iii) there exists a one-parameter family of 

(B~cklund) transformations that map a given solution into a new solu- 

tion. Of course these three properties are strictly connected £o each 

other as they usually come together; however, in many cases, it seems 

convenient to use the first one to derive the other two. It should be 

also plain that infinitely many other nonlinear evolution equations ha 

ve been found with the same properties of equations (I), (2) and (3), 
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and that we are focussing our attention on these three equations for a 
S&k~ 

mere~bf definiteness. 

Consider now the B~cklund transformations associated with (I), 

(2) and (3); they read 

(la) W(1) + W(2) = I (W (I) - W (2)) (4p + W (I) - W (2)) 
x x 2 

lib) W(1) + W(2) = (W(1)xx - W(2))xx (2p + W (I) - W (2)) -2 [(W(1)) 2 x  + 

+ + w(1)w(2)] 
X X ' 

for the Korteweg-de Vries (KdV) equation (I), 

(2a) V (I) + V (2) =-2p sin (V (I) -V(2)), 
W X 

(2b) Vt(1) + V (2) = 2p I "( vxx(1)- V(2))xx cos (V (I) - V(2)) + [ (~x (I) 2 

+ (V(2)) 2] sin (V (I) -V(2))} 
X 

for the modified Korteweg-de V±ies (mKdV) equation (2), and 

(3a) ?~I) + ~ ( 2 ) : =  -2p sin (?(I) ~(2) 
Jx -~ ) ' 

[3b) ?~I) _ ?(2) = I sin (?(I) + ?(2)) 
t 

2p 

for the Sine-Gordon (SG) equation (3); each of them takes the form of 

a system of two coupled differential equations for two unknown func- 

tions, and all imply that if one of the two functions is a solution 

of the associated evolution equation then also the second function sol 

ves the same evolution equation (this can be easily verified by cross- 

-differentiation). Therefome if, for instance, W (2) is a given solution 

of the KdV equation, then integrating (la,b) yields a new solution W (I) 

of the KdV equation (and note that the order of (la,b) is lower than 

the order of the KdV equation itself). 

The transformation (3a,b) was first derived by B~cklund (1873), 

and then, a century later, (la,b) was derived by Wahlquist and Esta- 

brook (1973), both in a geometrical context (see, for instance, [4,5], 

and, for a jet-bundle formulation of the B~cklund problem, [6]). Before 

proceeding to the spectral transform approach [2], two facts should be 

noted about the formulae written above. In the "first half", namely 

(la), (2a) and (3a), of the B~ck~udd transformations the time variable 

t enters only parametrically, and therefore one half of the B~cklund 
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transformation is in fact an ordinary (rather than partial) differential 

equation (in the variable M). In the second place compare (I) and (la) 

with (2) and (2a), respectively; although the KdV and mKdV equations 

are very similar, the "first half" of the corresponding B~cklund tran- 

sformations (la) and (2a) are rather different from each other. On the 

contrary, the mKdV and SG equations are very different from each other, 

and, nevertheless, the "first half" of their corresponding B~cklund 

transformation (2a) and [3a) are identical! As shown below, these pecu 

liar features of the evolution equations consldered here are neither 

accidental nor particular properties of these equations, but are area 

sonable consequence of the general scheme based on the spectral tran- 

sform [2] .  
As for the use of B~cklund transformations to construct solutions 

of evolution equations, and to derive an infinite set of conserved quan 

tities, the reader is referred to ~2] and the references quoted~there. 

For a recent application to potential scattering theory, see [7J. 

THE SPECTRAL TRANSFORM 

The basic step here is to introduce a time dependent linear dif- 

ferential (with respect to x) operator H(t,E) such that the nonlinear 

evolution equation of interest results as the compatibility condition 

between the eigenvalue problem 

(4) H (t,k)~ = 0, 

and the ev61ution equation 

(5) % : M (t,k)~ , 

where k is the eigenvalue, or spectral parameter, M(t,k) is a linear 

differential operator and the dependence of H and M on k is assumed to 

be rational. 

The two equations (4) and (5) are ~nown as Lax pair, and for in- 

stance, those associated with the evolution equations considered above 

are 

(Ic) H(t k) = ~2 + Wx(X,t ) + K2 ' p 

(Id) M(t,k) : 2 [2k 2 - Wx!X,t) ] ~x + Wxx (x,t) 

for the KdV equation (I), 
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(2c) H(t,k) = ~X - i Vx(X,t) O" 2 + ik~ 3 , 

(2d) M(t,k) : 2ik Iv 2 (x,t) - 2k2]~ + 2ikVxx 

+ 2V 3 (x,t) - 4k 2 Vx(X,t) ~ 0"2 ' 

(x,t) 0" I - ifVxxx(X,t)+ 

for the mKdV equation (2), and 

I% 

(3C) H(t,k) : Jx - i Tx(X,t) 0" 2 + ik ~3 

(3d) M(t,k) : (i/4k) {cos [2 T(x,t~ ~3 - sin [2 ?(x,t~ ~ }2 

0 -i I 
for the SG equation (3) (here ~ = (~ ~), ~ = (i 0 ) and ~ = (0 '?) 

are the Pauli matrices). 

These formulae explicitly show that the variable t enters para- 

metrically in the eigenvalue problem (4) (just as in the "first half" 

of the Backlund transformations (la), (2a) and (3a)), and that the o- 

perators H(t,k) associated with the mKdV equation (2) and SG equation 

(3) coincide. This suggests, in connection with the two remarks made 

in the previous section, that in fact the "first half" of a B~cklund 

transformation has nothing to do with the time evolution, and is rela- 

ted only to the eigenvalue equation (4). That this is indeed the case 

will be clear below; for the moment we first consider the e~genvalue 

problem (4) in detail by leaving out the time dependence. This will 

lead us to define the spectral transform. 

To this aim we choose to consider the operator 

(6) H(k) : ~x - Q(x) + ik~" 3 , 

with 

( ) 0 q(x) J 
(7) Q(x) = (e) 0 

q(x) 

a generalized version of (2c) (or, equivalenty, (3c)), known as the ge 

neralized Zakharov-Shabat operator; for a treatment analogous to the 

f~llowing, but for the operator (Ic), see [2]. The explicit expression 

of the eigenvalue equation (4), with (6), reads 

(8) ?x : [-ik5 + Qcx)]T. ?: 

where we assume that the condition (see (7)) 
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holds  for the formulae below to make sense. The spectrum of the eigen- 

value problem (8) has a real component, i .e.  all  real values of ~, and 

possibly (but not necessarly) a discrete component, i.e. a finite num- 

ber of complex Values of ~. For the real spectrum the solution of (8) 

is the 2x2 matrix ~(x,k) defined by the asymptotic conditions 

fe ikx ~(-) ~k) e -ikx) 

 (xk, ( lOa) 
x~+~(~) (k) e ikx e ikx 

¢~I)0(+) ~k) e -ikx 0 ) 
( lOb) 

x-o-~ ~(-) (k) e ikx 
r 

that uniquely define the reflection matrix 

(: ) ! (11) ~(k) = (+) (k) 0 

as a function of the real variable k. For the discrete spectrum (if 

any), we choose, merely for notational convenience, to indicate with 

•(+) ,N (+) n , n = 1,2, and K (-) (-) "'" n , n = 1,2,...,N , the discrete eigen- 

values that lie in the upper and, respectively, lower half of the com ~ 

plex K-plane, i.e. 

(12) + Im k (±) ,N (±) - n > 0 , n = 1,2,... 

Thus the vector solution ~(±) (x) corresponding to the eigenvalue k (±) in ' n ' 
vanishes as x~±~ and is defined by the equations 

(13) [_ ik(±l (+_) 
--nx n ~'3 + Q(x n = 1,2 ,N |n ' '''" ' 

(14) 
n ~I in ' 

where V T is the transpose of the vector (i.e. one-column matrix) V. 

Through the asymptotic behaviours 

(15) ~P(+) (x) ~ ~(+) eik(+) x (0) 
In x--P ÷ ~ I ' 

T ( -- ~(-) e-ikn(-)x (I0) (15b) -) (x) x-P +~ vn 

we finally define the spectral quantities 
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--(±) (_+) 2 
(16) ~n = [~n ] 

We are now in the position to introduce the spectral transform S [Q(x)] 

of the off-diagonal matrix Q(x), see (7), by the following definition 

(see (11) and (16)): 

' ~n , n = 1,2,..., 

we also refer to the problem of computing the spectral transform of a 

given matrix Q(x) as the direct problem. Note that solving the direct 

problem Q(x)--~S [Q(x)] ammounts to integrating the linear ordinary 

differential equation (8). 

The rationale for the definition (17) is that the knowledge of 

the quantities in the r.h.s, of (17) is necessary and sufficient to re 

construct the matrix Q(x)~ namely that the mapping Q(x)--~ s [Q(x)] can 

be inverted. The reconstruction of Q(x) from its spectral transform is 

known as the inverse problem, and its solution is obtained via the three 

following steps [2,8] : ]+- 
I dk ~(k) exp (ikz ~'3 ) (18) M(z) = 2-~- 

(19) K(x,y) + M(x+y) +I +~ 

-x 

/o 
(20) Q(x) = -2{ K21 (x,x) 

dx K(x,z) M(z+y) = 0 , 

KI 2 (x÷x) 

/ 0 

N(-) k(~2 

'~=i ~n(+)eik~ +)z 0 

x_~y 

This shows that, in order to solve the inverse problem, one has to so ! 

ve the linear matrix integral equation (19) for the unknown (2x2 ma- 

trix) ~(x,y); in this equation both the Kernel and the nonhomogeneous 

term are given in terms of the off-diagonal matrix M(z] whose explicit 

expression (18) obtains as a Fourier integral over the continuous spec 

trum plus a finite sum over the discrete spectrum. The formula (20) f~ 

nally yields the explicit solution of the inverse problem. It is worth 

noticing here that the mapping S [Q(x)]--~ Q(x) defined by (17), (18), 

(19) and (20) is of course nonlinear, and that its linearized approxi- 

mation coincides with the usual Fourier transform, namely (N (~)= 0) 
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~(k) _~ dx exp (2ikx ~3 ) Q(x) , 

I +° I dk exp (-2ikx 0- 3)~ (k) Q(x) ~_ 2~ -~ 

B~CKLUND AND DARBOUX TRANSFORMATIONS 

Here we sketch a technique to derive the B~cklund transformations 

(or, more precisely, the "first half" of them) associated with the ~e- 

neralized Zakharov-Shabat operator (~). The following approach has been 

extensively applied to many other differential operators, and, for a 

recent treatment including its extension to the multi-dimensional case, 

see [9] and the references quoted there. 

C~nsider the generalized Zakharov-Shabat equation (8) with a ma- 
(2) 

trix Q (x), 

122) 7~2): [-ik ~3 + Q~2)(x)] ~(2) , 

and let T(x,k) be a matrix transforming a matrix solution ~ (2) of (22) 

intQ a matrix solution of the generalized Zakharov-Shabat (8), but with 

a different matrix Q(1)(x), namely 

(23) ~(I) (x,k) = T(x,k) ~(2) (x,k) , 

(2,) ~$) = [-ik ~3 + Q(1)(x)] ~(I) 

This implies that the matrix T(x,k) satisfies the matrix differential 

equa£ion 

+ ik [r 3 T] + T Q(2) _ a(1) T = 0 ; (25) T x 

in order the analyze this equation, it is convenient to write down se- 

parately its diagonal and off-diagonal parts. Thus we introduce the 

splitting 

(26) T(x,k) = C(x,k) + A(x,k) , 

where C is the diagonal (commuting with ~%) component of T, 
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(27a) CI ° 1 C --- 

T22 

and A is the off-diagonal (anticommuting with ~'3 ) component of T, 

( 2 7 b )  A - . 

T21 0 

By tak%ng into account that Q(J) , j=I;2, is off-diagonal (see (7)) , the 

e q u a t i o n  (25 )  i s  t h e n  e q u i v a l e n t  t o  t h e  t w o  c o u p l e d  e q u a t i o n s  

(28a) C + AQ (2) - Q(1)A = 0 , 
X 

(28b) A x + 2ik 0"3A + CQ (2) - Q(1)C = 0 

Integrating the first equation, 

(29) c(x,k) = - ~3 r(k) ÷ I dy [A(y,k) Q(2)~y~ _ QCI~ (y)A(y,k)] , 

where r(k) is an arbitrary diagonal x-independent matrix, and substi- 

tuting this expression into the second equation, the system (28) redu- 

ces to the integrodifferential equation 

(30) (A- 2ik) A + ~Q(2) + Q(1) F = 0 
2 

where we have introduced the important integrodifferential operator 

that is defined by the formula 

(31) AF(x) = - ~3{ Fx(X) + Q(I (x)I dY[Q(1) (y) F(y) - F(y) Q 

x 

-I~ dy [Q(1)(y) F(y) - F(y) Q(2)(y~ Q(2)(x) , 

that specifies its action on a generic off-diagonal matrix F(x). The 

operator ~ , that plays a basic r61e in the spectral transform method, 

has been introduced first by a different way, namely by generalizing 

the well known wronskian relations [2]. 

We now make the strong assumption that the transformation matrix 

T(x,k), see (23), be a polynomial in the spectral variable k; because 

of (26) and (29), this ammounts to ask that 
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(32a) ~(k) =~ (2ik) n F (n) , 

n=0 

M 

(32b) A(x,k) = ~ (2ik) n A (n) (x) , 

n=0 

where of course the coefficients ~(n) are arbitrary constant diagonal 

matrices, and A (n) (x) are off-diagonal matrices that satisfy the recur 

sion relation 

(33) ACn) = AA(n+I) + Q(1) F(n+1) + ~(n+1~Q(2) n=0,1 2 ,M, 

that is readly implied by (30), together with the initial conditions 
A(M+I) = --'F tM+1) = 0. It is easily seen that the equation (30), being 

polynomial in k, implies M+2 equations~for the coefficients; moreover 

M+I of these equations can be explicitely solved to yield the matrices 
A ~n) (x) , 

M-n-1 
(34) A ~n) (X) =~Am[Q (I) (x) r (n+~+l) + F (n+r~'1) Q(2)(x~ ; 

m=0 

n=0,I,2, .... M-I, 

with A,M) (x)t = 0, while the last equation 

M 

(35) L Am[Q(1)(x) f(m) + r(m) Q(2)(x)] =0 , 

m=0 

gives a relationship between Q(2)(x) and Q(1)(x). 

to introduce the following notation: 

It is now convenient 

~36) F(m) = gm ~'3 + hm ' 

M M 

(37) g(z) =~ gm zm ~ m , hCz) = h m z , 

m=0 m=0 

~ l  u • ! ! (38) g cz ,z> ,z)=EhCz ) -h z)3/Cz-z> 

where the coefficients gm and h m are (arbitrary) complex numbers, so 

that the resulting expression of the matrix T(x,k) reads 

(39) T(x,k) = -g(2ik) - h(2ik)~ -~x dy [Q(1)(y)A(y,k)_A(y,k)Q(2)(y)J + 
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+ A(x, k) , 

+ Q(2) (x)] 

(1) (x) + 

On the other hand, in this notation the equation (35) relating Q 

to Q(1) (x) takes the compact form 

(2) (x) 

(4~) g(^) {[0 (I) (x) - 0 <2) <x)] ~ + h(A)[0 (I) (x> + Q<2)(x)] =0 , 

where g(z) and h(z) are the arbitrary polynQmials defined by (36) and 

(37). 

The transformation ~(2).._~(I) given by (23) with a polynomial 

dependence of T(x,k) on k is usually referred to as a Darboux transfor 

mation (since Darboux introduced this transf6rmation in the context of 

the Schroedinger operator (Ic) and in the particular case in which T 

is of first degree in ~ [2]). Moreover the relation (41) between Q(2) (x) 

and Q(1) (x), that corresponds to the Darboux matrix (39), with (40), 

will be named B~cklund transformation (for instance from Q(2) (x) to 

Q(1) (x~; before qualifying this terminology in connection with the con 

tent of the introduction, we consider first the relationship between 

the spectral transforms ~f Q(2) (x) and Q(1) (x) that corresponds to the 

B~cklund transformation (41). However, for the sake of simplicity, we 

limit our consideration to the continuous component of the spectral 

transform (for a more detailed discussion see £2]), 

Consider the~ the Darboux transformation that relates the matrix 

solutions ~(2) (x,k) a~d ~(I) (x,k) that safisfy the asymptotic beha- 

viours (10), namely 

(42) ~(J) (x,k) ~ exp (-ikx 0" 3) [ I + ~(J)(k)] , j:I,2 , 

where ~(J) (k) is the off-diagonal matrix (see (11) that defines the 

continuous component of the spectral transform of Q(J) (x) (see (17)). 

This transformation reads 

(43) ~(J) (x,k) : T(x,k) 7 (2) (x,k) IT (+~ ,k)] -1 

where the appearance of the matrix T(+~ ,k) in the r.h.s, takes into 

account the appropriate asymptotic conditions (42); indeed one should 

note that, as implied by (39), (40) and (31), 
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(44) T (+~,k) = -g(2ik) - h(2ik) 0-3 

is diagonal, and that the normalization condition adopted in (43) by 

multiplying from the right by [T(+~ ,M)]-I does not affect the results 

and formulae given a~o~e. Combining now the behaviour (42) with the 

Darboux transformation (43), with (44), one easily obtains the corre- 

sponding B~cklund transformation for the spectral transforms, namely 

(4s) = [g(2ik) - h( ik) + b(2i )  3]-I 

These results are our equipment for deriving and investigating 

nonlinear evolution equations, as well as their associated B~cklund 

transforma£{ons. In fact, let us consider first a parafneter (i.e. time) 

dependent matrix Q(x,t) in the generalized Zakharov-Shabat equation (8), 

and let us set 

(46) Q(2) (x) = Q(x,t) , Q(1) (x) = Q(x,t +£ ) , 

in the previous formulae, togethe~ with 

(47) g(z) = 2/~ , h(z) = ~(z) ; 

then, in the limit E-m0, the relation (41) yields the (AKNS class [8] 

of) nonlinear evolution equation 

(48) Qt(x,t) = ~ ~(L) Q(x,t) , 

where L is ~f course the integrodifferential operator that obtains from 

with Q(1)(x) = Q(2) (x) = Q(x,~), namely (see (31)) 

(49) LF(x)=- ~3[ ~(x) + 2Q(x,t) I dy [Q(y,t), F(y)] . 

X 

The C o r r e s p o n d i n g  e v o l u t i o n  e q u a t i o n  f o r  t h e  s p e c t r a l  t r a n s f o r m  of  

Q(x,t) is very simple and reads 

(50a) ~t(k,t) = ~(2ik) 0"3 ~(k,t) , 

(50b) dk(~)/dt = 0 , n=1,2, ,N (+-) 
n 

= ~(-+) (t) , n=I,2 .... ,N (+) (50c) d~ (±)on (t)/dt ~ ~(2ik(±))__n 
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Therefore the initial value problem associated with the evolution equa 

tion (48) can be solved by means of linear operations only, via the 

steps Q(x,o)---~S[Q(x,o)] ~ S[Q(x,t~-----p ~(x,t) . 

For inStance the mKdV equation (2) obtains by setting in (48) 
3 ~(z) = z and 

(2e) Q(x,t) = iVx(x,t) ~'2, 

while the SG equation (3) obtains with ~(z) = -z -I and 

(3e) Q(x,t) = i~x(X,t) ~-2" 

Let us consider next a solution Q(2) (x,t) of the evolution equa- 

tion (48) and a matrix Q(1) (x,t) related to it by the equation (41); 

with the condition %hat the polynomials g(z) and h(z) be not dependent 

on time; then also Q(1) (x,t) is a solution of the same evolution equa- 

tion (48). A direct proof of this statement is certainly far too diff~ 

cult, while the spectral transform approach provides a proof that, in 

the case in wich the spectral transforms of Q(1) and Q(2) have no di- 

screte spectrum component, is even trivial. In fact, if the matrix 

~(2) (k,t) satisfies the (linear) evolution equation (50a), then of cour 

se also ~(I) (k,t), related to ~(2) (k,t) by (45), is a solution of (50a) 

(in this proof, that is evident by simple inspection, it is clear that 

the condition that g(z) and h(z) be time indipendent is indeed essen~ 

tial). A more careful analysis is requited to prove the statement ma- 

de abo~e if the spectral transforms of Q(2) (x,t) and/or Q(1) (x,t) DOS 

sess also a discrete spectrum componentj for a general discussion of 

this point see [2]. These results justify the name of B~cklund tran- 

sformation for the equation (41), as this equation defines a mapping 

of a solution Q(2) (x,t) of the evolution (48) into the new solution 

Q(1) (x,t) of the same evolution equation. Moreover, it should be poin- 

ted out that the B~cklund transformation (41), characterized by the 

two polynomials g(z) and h(z), does not depend on the particular evo- 

lution equation of the class (48) (i.e. on the polynomial ~(z) that 

characterizes a particular evolution equation). Therefore two different 

evolution equations of the class (48), for instance the mKdV and SG e- 

quation, should have the same (first half of the) B~cklund transforma- 

tion. For instance/the B~cklund transformation (2a) (or (3a)) obtains 

by setting in (41) 

I 
(51) g(z) = 2 z , h(z) = p , 
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where p is a real parameter, and by ~sing the expression (2e) (or(3e)). 

In this context, it is clear that the KdV and mKdV equations (I) and 

(2) should not be expected to have the same B~cklund transformation 

since their associated linear operators, namely the Schroedinger and 

Zakharov-Shabat operators, respectively, are different from each other. 

B~cklund transformations have been frequently used to construct 

new solutions of a nonlinear evolution equation out of a known one; in 

particular, the one-soliton solution is obtained by applying 

a B~cklund transformatio%o the vanishing solution. In this respect, 

quite useful formulae are the so-called superposition formulae; they 

follow from the remarkable property of the B~cklund transformations 

(41) to commute with each other. The proof of the commutativity theorem 

is rather simple in the spectral transform approach [2]; in fact, in 

the particular case in which no discrete spectrum is involved, the 

proof is an obvious consequence of the re&ation (45). A direct proof 

of the commutativity theorem for the B~cklund transformation (3a,b) 

was first given by L. Bianch~ (1896) in his lecture notes on differen- 

tial geometry. 

To give an example of a superposition formulae, let us consider 

the B~cklund transformation (la) ; this transformation depends on the 

real parameter p, and therefore one can sequentially apply two B~cklund 

transformations, one with parameter Pl and the second with parameter 

p^, to a given solutio W(0) (x,t) of the KdV equation (I): W(0) (x,t) 
I 
~W(1) (x,t). 2 ~W(x,t). On the other hand, the order of the two 

B~cklund transformations can be reversed without changing the final 

outcome because of the commutativity theorem: W(0)(x,t)- 2 ~.W(2) (x,t) 
I --------~W(x,t). It is then easy to eliminate from all the relevant equa 

tions corresponding to these four B~cklund transformations a~ deriva- 

tives to end up with the following (purely algebraic) superposition 

formula [2] 

(52) w =.(°) 2(pI + p21 [.(I) .(2)]114(I) .(2) + 2(pI 

A different (but equivalent) superposition formula obtains by elimi- 

nating instead the starting solution W(0) (x,t), and it reads [10] 

I .(2> .(2))] 1 (53) W = T + - x - - 

/[W (I) - W (2) + 2(pi- P2 )] 

Interesting new formulae obtain from these superposition formulae by 

setting Pl = p +~ ' P2 = p' W(2) (x,t) = W(x,t);p), W(1) (x,t)=W(x,t~p~E) 
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and then by letting ~ vanish; for instance, one of the resulting ex- 

pressions is 

I Wp (x,t;p)] (54) W(x,t;p) = W (0 )  (x,t) - 2p% (x,t;p) /El + T 

and this yields a new solution of the KdV equation (I). In this expres 

sion W (x,t;p) is of course the solution that obtains from W (0) by a 

B~cklund transformation with parameter p. From this formula, a new ex- 

plicit (singular) solution of the KdV equation (I) is easily derived 

by taking W(0) (x,t) = 0 [10]. Additional results, and the derivation 

of analogous formulae from the B~cklund transformations associated with 

the generalized Zakharov-Shabat problem can be found in [10]; there the 

algebraic construction of a two-dimensional lattice of explicit solu- 

tions is also reported. 
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GAUGE COUPLING OF NON-LINEAR ~-MODEL 

AND A GENERALIZED MAZUR IDENTITY 

B. CARTER 
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D.A.F., Observatoire de Paris-Meudon 

Abstract 

An inversion symmetric class of non-linear ~ -models is 

constructed. The original pure model with field values in the coset 

of a classical matrix group ~ with respect to an isotropy space 

subgroup under the adjoint action is generalized to a minimally 

gauge coupled model in which the field is a section in a bundle 

with group ~ acting on the coset space as fibre with a non- 

trivial connection of (for example) Yang-Mills type. It is shown 

that the gauge coupled models admit a natural generalisation of 

the identities originally constructed by Mazur for the pure non- 

linear ~-models whereby the divergence of a quantity whose surface 

integral vanishes when suitable boundary conditions are satisfied 

is shown to be equal to a functional of the difference between 

two sets of field variables that is positive definite in many 

relevant situation. In such cases, which occur when the base-space 

metric is positive definite (so that the system is of elliptic 

type) and the isotropy subgroup is compact, the identities lead 

directly to uniqueness theorems for the solutions. 

i. Introduction 

In recent years the rather wide class of field models that would 

be described by mathematicians as harmonic mappings onto homogeneous 

spaces has come to be known in physics under the appelation of 

non-linear ~-models. Our present purpose is to consider a sub-class 

of such models in which the fields belong to the symmetric coset space 

generated as the quotient of one of the classical (Lie) matrix groups by 

an isotropy subgroup of the adjoint action of the group on itself. In 

particular a considerable body of work originated by Geroch (I) and 
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Kinnersley (2) and developed more recently by Sanehez (3), Mazur (4) and 

others has shown that the Ernst formulation of the Einstein equations 

for a stationary axisymmetric vacuum solution and its electromagnetic 

generalization can be considered as a model of this type. 

Among the many interesting results to emerge from this 

work has been the developement by Mazur (5) of a systematic and 

elegant procedure for the construction of identities relating the 

divergence of a quantity whose surface integral vanishes when 

suitable boundary conditions are satisfied to the sum of a quantity 

that vanishes when the field equations of the model are satisfied 

and a functional of the difference between two sets of the field 

variables that turns out to be automatically positive definite 

in many relevant cases. The class of divergence identities 

constructed in this way includes as special limit cases the 

identities having the same properties that were developed 

successively by the present author (6) and by Robinson(7),(8)for 

the purpose of establishing the uniqueness of solutions to the 

black hole equilibrium state problem as formulated in terms of 

a non-linearly coupled elliptic system on a two-dimensional base 

space by the present author (6) (9) (i0). The common ancestor to 

all such identities is the well known relation 

C = v + 

which is used to prove uniqueness of solutions to the ordinary 

linear Laplace equation 

= o 

on any base space with positive definite metric ~ , subject 

to boundary conditions such that ~ must tend to zero somewhere 

and that ~ ~ must tend to zero everywhere on the boundary 

of the base space region under consideration, where ~ is the 

difference between any two allowed solutions. The idea in all the 

applications of the method is simply to integrate over the base 

space region under considerations and to use Green's theorem and 

the boundary conditions to establish that the integral of the 

positive definite functional must vanish and hence that its argument 

must be zero throughout, which in most cases is sufficient to 
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immediately establish the identity of the two hypothetical solutions. 

At about the same time as Mazur's construction of his divergence 

identity was carried out, an even more general class of identity 

relating a divergence to a right hand side with the same kind of 

positivity property was developed independently by Bunting(ll), (12) 

for the same purpose, namely completing the proof of the uniqueness 

theorem(9),(7),(I0) for electromagnetic black hole equilibrium 

states. Although they do not have such an elegantly explicit form 

as the Mazur type identities, the Bunting identities have the 

advantage that they can be constructed not only for 

non-linear ~-models but even for more general harmonic mappings 

in which the image space is non-homogeneous, provided that an 

appropriate negativity condition is satisfied by the image space 

curvature. A concise description of the Bunting construction, and 

an explicit demonstration that it applies in particular to all 

the non-linear ~-models covered by the original Mazur construction 

(in so much as they can be shown to satisfy the curvature negativity 

condition automatically) has been given elsewhere by the present 

author (13). This work showed that all though they are necessary 

for the elegant explicit form of the Mazur identities, the special 

symmetry properties of the non-linear ~ -models to which they 

apply are not really essential for the unicity theorems that are 

obtained thereby. 

Our present purpose is to show how the Mazur type divergence 

identities can also be generalized in a quite different manner 

from that achieved by Bunting. Moreover unlike the Bunting 

construction, the procedure to be described here depends in an 

essential way on the existence of the continuous symmetry group 

action on the image space of the non-linear ~-models. We start 

by showing how the ordinary non-linear ~-models of the symmetric 

coset space kind considered by Mazur can be generalized in a uniquely 

natural way by minimal coupling of the standard kind to a background 

gauge field belonging to the algebra of the continuous symmetry 

group, and which might itself (for example) be supposed to obey 

field equations of the standard (coupled) Yang-Mills type. After 

a general description of the structure of such gauge-coupled non- 

linear ~-models, it is shown how appropriate generalized Mazur 

identities can be constructed and used for proving uniqueness of 

solutions with a given gauge background field under conditions 
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of the same kind as were necessary when the gauge background field 

was absent, including in particular the requirement that the base 

space metric be positive definite (so that the system is of elliptic 

type) and the requirement that the isotropy subgroup characterising 

the coset space should be of compact type even though the group 

as a whole is not. 

2. Inversion Symmetry of the Homogeneous Coset Space 

We shall be concerned with a set of field variables ~ belonging 

to a manifold ~ that can be identified with an orbit of the adjoint 

action of a matrix group ~ acting on itself. More specifically 

it will be supposed that the group ~ is of the standard type 

as defined by the invariance requirement for a standard 

(non-generate) form ~ (with components ~o~ ) under the natural 

action of the elements Q (with components C~ ) of ~ as 

specified by 

q TI (2.1) 

where a heavy dot denotes matrix multiplication (contraction of 

adjacent indices) and the star denotes hermitian conjugation (i.e 
. 

= Qa b ). The elements ~ of ~ are supposed 

to be hermitian matrices with component ~&b such that the 

corresponding matrices ~ with components ~a6 ,as defined 

by the operation of index raising by contraction with ~ , should 

satisfy the group characterization condition (2.1), i.e. 

7"+ (22) 

Since the adjoint group action 

(2.3) 

(which is required to be transitive over ~ ) is equivalent to 
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it can be seen that it automatically preserves the hermiticity 

requirement 

A homogeneous space ~ constructed in this way can evidently be 

regarded as a coset space, 

where ~ is an~ isotropy subgroup of ~ defined to consist~ of 

36 elements Q ~ ~ such that some arbitrarily chosen element 6 

remains invariant under transformations of the form (2.4). Such 

a space has a natural (Riemannian or pseudo-Riemannian) metric 

(2.7) 

induced by the corresponding natural metric 

(2.8) 

on ~ where the bracket product is defined on the Lie algebra a 

of ~v , whose elements ~ (with components ~a&) are ¢haca~teri$c~ 

by 
+ n . a ~ =  o i2.91 ~I.~ "U 

according to the standard prescription 

(2.10) 

which automatically satisfies the reality condition 

(2.11) 

as a consequence of (2.11) 
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It is well known that a homogeneous space ~ constructed in 

this manner is automatically a symmetric space in the sense that 

there is a tangent space reversing automorphism associated with 

any arbitrarily chosen fixed element ~ This automorphism is 

induced on ~ by a corresponding automorphism 

Q' ~ n ~ 

on This automorphism can be seen to be an inversion, in the 

sense that 

(Q~)' = Q 
(2.13), 

as a consequence of the relation 

(2.14) 

(which expresses the group membership requirement (2.2) subject 

to the hermiticity condition (2.5)) and of the commutation relation 

which follows directly from (2.1). To see that this inversion mapping 

does in fact reverse the tangent space to ~ at ~ , one starts 

by noting that an infinitesimal displacement ~ in the tangent 

space must (by differentiation of 2.3) be expressible in the form 

e , + - [ ' ,  J 
where ~ ~ is an infinitesimal displacement parameter and ~ is 

element of the algebra ~ of ~ as characterized some by 

(2.9). The automorphism (2.12) on induces a corresponding 

automorphism 

a 

on the algebra. This automorphism also has the inversion property 

( a 9  t = d ~2.1~1 
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as a consequence of (2.14) and of the analogue, 

(2.19) 

of (2.15). The same properties (2.14) and (2.19) also imply 

(2.20) 

so that one sees directly that the tangent space elements (2.16) 

will indeed be reversed by the inversion, i.e. 

(~, +)'- -~ ,+ 
(2.21) 

The automorphism specified according to (2.17) for any arbitrarily 

chosen fixed point ~ in ~ determines a natural decomposition 

of the algebra ~ as a direct sum of even and odd subspaces ~ 

and ~- : we shall have 

= ~+ + ~-- (2.22) 

where the even and odd parts ~+and a-are defined by 

a *  : ~ ( a ~ : a  t) 
(2.23) 

sO that 

(C~±)  t : :~ 6~ ± (2.24) 

It follows immediately from (2.17) that the commutator of any pair 

of algebra elements ~ and b will satisfy 

(2.25) 

The commutators among the odd and even subspaces can therefore 

be seen to satisfy 

C< --- b J =o 
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which shows that the odd (but not the even) subspace is a subalgebra. 

In terms of this notation scheme, the expression (2.16) for a 

displacement in the tangent space to X at ~ can be rewritten 

as 

(2.27) 

3. The Gauge Coupling 

In pure non-linear O'-models of the standard kind, the elements 

in the space ~C are considered as ordinary physical field 

variables over the relevant base space ~t. In terms of the (flat 

or curved) base space metric 

(3.1) 

(where DC M , ~ = i,... ~ are local base space coordinates) 

the standard general form for the Lagrangian L from which the 

field equations for ~ are to be derived is 

L : (3.2) 

where the base space metric (3.1) is used for raising and lowering 

of the base space indices ~ and for the specification of the 

base space covariant differentiation operation occurring in the 

definition 

+ 
- p , 3 . 3 )  

of the current matrix. The quantity p appearing here is any given 

(e.g. uniform) weight field on the base space, and the brackets 

appearing in (3.1) indicate the ordinary trace scalar product on 

the group algebra ~ to which the current matrix must evidently 

belong. 

The purpose of the present work is to consider a rather wider class 

of models in which the ~ are no longer considered as ordinary 

physical field variables but as a section (14) of a fibre bundle 

over the base ~ with gauge group ~ and adjoint action (2.3) 

over non-linear fibres of the form ~ . Such a structure belongs 
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to the general class of non-linear fibre bundles which includes 

as special cases the familiar examples of the class of principle 

bundles (in which the fibre is the group itself, subject to its 

own left action) and the class of ordinary vector bundles (for 

which the fibre is linear, as in the case of the most commonly 

used kinds of physical gauge theories such as quantum 

chromodynamics). The definition of covariant differentiation in 

any (linear or nonlinear bundle) requires the specification of 

a differential connection on the associated principle bundle, such 

a connection being represented in any local gauge patch by a gauge 

one-form whose components A~ say are elements of the Lie 

algebra ~ of the group, which in the present case means that 

they must satisfy 

(3.4) 

by (2.9). For a non-linear action of the kind specified globally 

by (2.4) and locally by (2.27) the corresponding operation of 

covariant derivation on ~ will be given by 

(3.5) 

where ~ denotes ordinary partial differentiation with respect 

to the local base space coordinates ~ , and, in accordance 

with the notation scheme introduced in the previous section, 

+ %:A (3.6) 

With this definition a local gauge transformation of the form (2.4) 

will induce a corresponding covariant transformation 

on J~p ~:D provided that A p. undergoes a corresponding 

transformation of the appropriate (noncovariant) form, i.e. 

Since the current can be considered globally as a section in the 

associated (linearly fibred) adjoint algebra bundle, it will itself 

be subject to an operation of gauge covariant differentiation of 

the standard kind, namely 
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(3.8) 

where ~ denotes the ordinary operation of covariant 

differentiation as defined purely in terms of the metric (3.1) 

without reference to the gauge field. In terms of this notation 

the -~ integrability condition on ~ for the existence 

of ~ satisfying (3.3) is expressible as the identity 

(3.9) 

where square brackets on indices denote antisymmetrisation and 

F~ the part of the covariant gauge curvature field, is odd 

i.e. 

(3.10) 

where 

(3.11) 

As in the case of the ordinary non-linear ~-models for which 

the gauge field is absent, it can be seen still in this more general 

case that the hermiticity condition (2.5) on ~ ensures that 

the current matrix ~ defined by (3.3) and (3.5) will 

automatically belong to the odd subalgebra ~- , in the sense 

specified by (2.23), i.e. we shall have 

(3.12) 

or equivalently in our condensed notation scheme 

(3.13) 

Differentiation of (3.12) leads to the deduction that the even 

part of the covariant derivative has the antisymmetric form 
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(3.14 

and hence that its contraction must vanish, i.e. 

(D,#O +- 0 (3.15 

thereby establishing the important conclusion that the covariant 

divergence D~ ~ I'~ of the current matrix will also automatically 

belong to the odd subalgebra ~- . 

4. Field Equations 

We are now in a position to obtain the field equations that are 

specified by the Lagrangian (3.1), which takes the explicit form 

I -1 

L = -~-~ ~ { @ ( D A , ) .  #D~+t ,,.~, 

Variation of all the quantities involved gives 

aL : ~( T ~- L ~) J~ ~ t,,. [ ~'".,~,~,,.] 

+ -~ ~ [ ( D , , O ) . # ' - a + J  

The variation of the gauge field and the metric has been included 

here in order that the corresponding current and effective energy 

momentum tensor may be read out. It can be checked that the current 

matrix ~ appearing in (4.2) does in fact agree precisely with 

our previous expression (3.3), while the effective energy momentum 

tensor takes the form 

T~" --~e" ~ [~9~-~' "°~J~ J (4.3) 
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The variational field equations will be specified by the requirement 

that one should have 

for all allowed variations of the field quantities ~ If the 

matrix components of ~ were unconstrained, we should immediately 

obtain the requirement that the field equations should have the 

form 

D ~  - 0 (4.5) 

as a consequence of the evident non degeneracy of the trace metric 

(2.10). However more care is needed in the case under consideration 

here, for which the field variables are supposed to be constrained 

by the requirement that ~ -- should lie on a single trajectory 

(characterized by the hermiticity property (2.5)) of the adjoint 
J L  

group action (2.3). Under these conditions the matrix ~ is 

no longer arbitrary, being restricted to have the form (2.27), 

but we can nevertheless use the fact that the product "'~"--~ 

will be an arbitrary member of the odd subalgebra C~- as 

characterized by (2.9) and (2.24). Since we have seen in the previous 

section that the covariant current divergence ~)~will also 

belong automatically to this same odd subalgebra by (3.15))2 

we get back to a set of field equations having the same form (4.5) 

as in the unconstrained case, provided that the restriction of 

the trace metric (2.10) to the subalgebra ~- is known to be 

non-degenerate, a requirement that can easily be seen to be satisfied 

in the standard cases for which the conserved 

form ~ characterizing the group is herm tean in the complex 

case or symmetric or antisymmetric in the real case, corresponding 

to groups of (pseudo) unitary complex matrices or of pseudo 

(orthogonal) or symplectic real matrices. 

An alternative way to derive (4.5) is to work out the Noethe~ 

identity arising from the invariance of L under a (globally 

uniform) group action of the form (2.4), which (subject to (3.12)) 

leads directly to a current divergence condition of the form 
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which is evidently equivalent to (4.5). The analogous divergence 

condition on the effective energy momentum tensor that is obtained 

from the Noether identity arising from the general covariance of 

the expression (4.1) can be seen to take the form 

V,.. T ' ~ ,  : t..'[g'tF,.<,,] <~.,, 

Exactly divergence free current components and energy momentum 

tensor could be obtained by adding on appropriate contributions 

arising purely from the gauge field in the case when the latter 

obeys dynamic equations of Yang-Mills type in the sense that it 

is obtained from a total Lagrangian scalar L T the form 

L T :  L + L ,  (4.8) 

where 

, < ) 
L -- -- ~ F F '~ ~71 ~V ~ (4.9) 

for some coupling constant ~ The analogue of (4.2) for the 

Yang-Mills contribution to the total Lagrangian is 

aL 
I 

(4.10) 

where the pure Yang-Mills contribution to the total current 

(4.11) 

has the form 

= ~[ ~ (4.12) 
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and the pure Yang-Mills contribution to the total effective energy 

momentum 

T., .* '  ; T ~' " T  ~' u F v 
(4.13) 

has the form 

| i 

-- , , . . , @  - 1 , , ,  

Conservation of the total current is trivial since the Yang-Mills 

field equations evidently reduce to the requirement that it be 

zero, i.e. 

~ = O 4.15) 

which is equivalent to the generalized Maxwell source equation 

Dv F~w= 4~ z ~M (4.16) 

for whiCh the field equation (4.5) for @ is an integrability 

condition. On the other hand the Noether identity expressing the 

conservation of the total effective energy momentum tensor has 

the non-trivial form 

~'p T-T P'~ = 0 (4.17) 

5. Generalized Mazur Identity 

Our purpose in this final section is to show that the gauge coupled 

-model set up in the previous sections satisfies a natural 

generalization of the identity previously constructed by Mazur 

in the absence of a gauge field for the purpose of proving uniqueness 

of solutions to wide classes of boundary condition problem subject 

to appropriate signature conditions. 
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The situation we wish to consider here is one in which we have 

two solutions ~[o] and ~E1] say of the field equations (4.5) 

as defined with respect to the same background gauge field A p 

our purpose is to study a deviation matrix /~ (with components 

/~& ~ ) defined by 

so that A has the property of vanishing if and only if the 

two solutions ~ a n d  ~[1] coincide. 

The specification (3.5) of the covariant differentiation operation 

on ~ can be seen to determine a corresponding operation on 

specified by 

(5.2) 

It is convenient to introduce an abreviated notation in which a 

bulls eye denotes the difference between any functional of ~[1]and 

the analogous functional of ~ , the functionals themselves 

being distinguished by the corresponding suffices, so that in 

particular for the current matrix functional we shall write 

In terms of this notation scheme, the covariant derivative (5.2) 

of /~ can be expressed by 

-I 

(5.4) 

Following lines suggested by the work of Mazur in the absence of 

the gauge field, we now take the gauge covariant divergence of 

(5.4), which leads to the identity 

p 0 -1 Y- o ® /~ -1 
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When one takes the trace of this, the fact that the trace of a 

commutator must vanish causes the gauge covariant derivative on 

the left hand side to reduce to ordinary covariant derivatives. 

Thus using the abreviation 

for the (evidently gauge covariant) trace of the deviation matrix, 

we obtain the required basic identity in the form 

°- 

- , - ' / I   LJI 
(5.7) 

where we introduce a field dependent norm defined by 

(5.8) 

and where use has been made of the oddness properties (3.13) and 

(3.15) that result from the hermiticity requirement (2.5). The 

basic identity (5.7) has the property that the left hand side reduces 

to a pure divergence when the field equations (4.5) one satisfied, 

since the vanishing of the gauge covariant current associated with 

the separate solutions evidently implies the vanishing of their 

difference, i.e. 

(5.9) 

Such an identity can be used to establish a rather wide class of 

uniqueness theorems for cases in which the base metric ~ and 

the field matrix q~ have a well defined positive (or negative) 

definite character, i.e. 

~ ~ o ~ ~ ~ ~ o ~510~ 
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and 

~ ~o ~ ~& +&6 > o (5.11 

the latter property being evidently invariant under transformations 

of the form (2.3). Such a situation arises for coset 

spaces ~ / ~ in which the isotropy subgroup ~ is the 

intersection of ~ with a strictly unitary group (in the complex 

case) or a strictly orthogonal group in the real case. Thus in 

the complex case, for hermitean ~ with ~ of the form 

5 U (p~ it would be necessary that ~ should have the 

form S~ ~(P) x ~(~) In the real case, for 

symmetric ~ with ~ of the form 50~pj~} it would be necessary 

that ~ should have the form S (O(~x O(~), while for 

antisymmetric 9 (in an even number of dimensions in order to 

be non-degenerate) with ~ of the form 5~ ~) it would be 

necessary to have ~ of the form O S ~ ~ 

Since a tensor product of positive definite bilinear or sesquilinear 

forms (in the present instance the tensor with components 

~Mv ~[,]&6 ~£~ c~ ) is always itself a positive definite 

form for the tensor product of the corresponding vector spaces 

(which in the present instance contains the current matrix with 

components ~ ~ b c ) one sees that the positivity properties 

(5.10) and (5.11) imply the corresponding positivity property 

This property enables one to establish uniqueness theorems for 

a large class of problems in which ~ is defined over a base 

space domain ~ say subject to any boundary conditions, on a 

finite or asymptotic surface S bounding ~ ~ that are 

sufficiently stringent to ensure that one has 

(5.13) 
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where ~ 5~ is the metric normal surface element. Under these 

circumstances application of Green's theorem to (5.7) gives 

I o-'  Jl = o 

where ~Z is the metric surface element on the base space. When 

the conditions (5.10) and (5.11) are satisfied, we can apply (5.12) 

to (5.1 4) so as to obtain the conclusion that we must have 

(5.15) 

throughout the domain ~ . By (5.4 and (5.2) this latter result 

can be seen to be equivalent to the conclusion that the deviation 

matrix A must satisfy 

throughout the domain Z Hence if the boundary conditions are 

sufficiently strong to fix the limiting value of ~ uniquely (so 

that ~ tends to zero there) even at a single point, then we can 

conclude from the homogeneity of (5.16) that /~ must vanish 

everywhere in ~ which by (5.1) establishes the required unicity 

theorem to the effect that 

~ Lt] --" ~3)[o] (5.17) 

everywhere. 

We can in fact establish such a result for an even more general 

class of boundary conditions in cases when ~ is hermitian or 

real symmetric, so that ~ is a pseudo-unitary or pseudo-orthogonal 

group of type 5UCP~) or SO(P~) , since in these cases it 

can easily be checked (e.g. by working in a system such that 

and ~C~ are simultaneously diagonal) that the trace of the 

deviation matrix itself has the positivity property 
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, ~ o  % o ==> Zh  > o (5.181 

Under these circumstances by multiplication of (5.7) by A/__~ where 

is an arbitrary positive index, and using (5.9), we obtain 

a more general divergence relation of the form 

= p-' A~- ' [  A I Ig  °11' "r rP '  ~.*'"('~A);~,,~} 
(5.19) 

in which both terms in the bracket on the right w£ll still be non- 

negative. I~ follows that even if the boundary, requirement (5.1.3) 

is weakened to the more general form 

s P ~ "  ( V ' ~ A )  45~  ; 0 ~5.20~ 

for any fixed index satisfying 

~ 0 (5.21) 

then we shall still obtain the conclusion that (5.15) must hold 

throughout in order to avoid the first term in the bracket on the 

right hand side of (5.19) becoming strictly positive. The obvious 

condition 

~ /k = O (5.22) 

ensuring that the other non-negative term in the bracket should 

vanish, does not represent an independent restriction but is obtained 

automatically by taking the trace of the consequence (5 16) of 

(5.15). Once (5.22) has been obtained in this way it is evident 

from (5.18) that it can be used directly to establish the unicity 

property (5.17) whenever the boundary conditions fix the limit 

of ~ at least at some point. 
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I. Introduction 

The study of magnetic monopoles exemplifies the new interaction 

between high energy physics and mathematics. On one hand the discovery 

of such monopoles would allow deep insights into the basic structure of 

matter and the early history of our universe. On the other hand, a 

limiting form of the equations describing the monopoles turns out to be 

completely integrable, and now is an important member of the slowly in- 

creasing set of completely integrable non-linear differential equations, 

which are much studied by mathematicians both for their intrinsic inter- 

est and as a tool in topology and algebraic geometry. 

The Maxwell equations in free space are symmetric under interchange 

of electric and magnetic fields. In matter this symmetry is destroyed, 

as only the electric field has sources, namely electrically charged 

matter. Of course it was tempting to introduce magnetic charge into the 

equations to restore the symmetry, and to look for such charges in exotic 

places like moon rocks, so far without success. For static charges one 

obtains 

where B is the magnetic field, and ~m the magnetic potential, which is 

related to the magnetic charge density Pm by 

(2) 

For classical fields this is perfectly consistent. 

However, quantization requires a Lagrange formalism, in which the 

electromagnetic field is the curvature of a U(1) connection, the electro- 
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magnetic potential. One component of the Bianchi identities for this 

curvature is 

which states that the magnetic field has no sources. 

In 1931, Dirac found a way out. In modern terminology, he elimina- 

ted a point from space and considered connections on non-trivial U(1) 

bundles on R3-pt. These bundles are integer powers of the Hopf bundle. 

The integers correspond to the magnetic flux through a sphere around the 

singular point, 

Thus one obtains Dirac's quantization condition 

(4) 

for the electric charge e and the magnetic charge 

(6) 

Note that this construction only works for the gauge group U(1), not for 

its non-compact coVering. As the unitary representations of U(1) are 

labeled< by the integers, the existence of magnetic charge implies the 

quantization of electric charge, a conclusion which also is reflected in 

eq. (5). 

The main disadvantage of Dirac's construction is the existence of 

singular points at the monopole centres, which leads to difficulties. 

In most of the present work on magnetic monopoles these singularities 

are regarded just as an idealization which hides the complex structure 

of the core of real monopoles. 

Today most high energy physicists believe that the electromagnetic 

gauge group u(1)em is a subgroup of a simple or at least semisimple gauge 

group G, Under which the laws of nature are invariant. Such theories are 

called "grand unified" (GUT), as G should describe electromagnetic, weak, 

and strong interactions. Dirac's U(1) bundles on R3-pt then can be re- 

placed by G bundles over all of R 3, which far from the monopole positions 

reduce to U(1) bundles, in the sense that the components of the connect- 

ion which are orthogonal to the U(1) generator decrease exponentially 

with increasing distance from the monopole cores. 

The fact that in most physical phenomena only a subgroup H of G is 
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manifest as symmetry group is explained by the lack of G symmetry of the 

physical vacuum, whose invariance group is H. From experiments we know 

where SU(3) c is the gauge group of the strong interactions. It is not 

inconceivable that H has further factors correspondin~ to not yet dis- 

covered interactions. 

Outside of the monopole cores the gauge fields should belong to a 

subgroup H m of H, which can be described as the holonomy group of a 

connection on a sphere around the monopole core. Dirac's monopoles would 

have Hm=U(1)em, but today one expects an Hm=U(1) m which projects both 

to U(1)em and to a subgroup U(1) c of SU(3) c. Such monopoles also would 

carry colour magnetic charge. At distances larger than Ifm from the 

centre, the colour magnetic charge is expected to be screened by vacuum 

fluctuations, and the monopole should look like the one conceived by 

Dirac. However, here these quantum effects will not be discussed further. 

The physical vacuum should not be described as empty space, but as 

containing condensed matter of some kind. The simplest description of 

such matter is by a scalar field ~(x), the Higgs field, though this just 

may be a rough description of a more complex situation. The possible 

values of ~(x) in the vacuum should lie in one orbit of G, and the in- 

variance group of such a ~(x) is conjugate to H ~G, sUch that the vacuum 

states correspond to the points of G/H. 

A two-sphere whose points lie in regions of approximate vacuum con- 

tains net charge of magnetic type, if the corresponding element of the 

homotopy group ~2(G/H) is non-trivial. For theories, in which U(1)em is 

contained in a semisimple GUT group G, the homotopy group ~2(G/H) always 

is non-trivial, and the possible existence of magnetic monopoles is a 

necessary consequence. However, GUT theories predict monopoles of very 

large mass, such that only in early stages of the big bang monopole pro- 

duction should have occurred. Unfortunately, not enough is known to pre- 

dict the present monopole abundance. 

In the same way as a non-trivial ~2(G/H) predicts point like defects 

in the physical vacuum, a non-trivial ~I(G/H) would yield string like 

defects, and a non-trivial ~o(G/H) would yield domain walls. The latter 

are excluded on observational grounds, but cosmic strings may have shaped 

the mass distribution in our universe. 
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2. Degrees of freedom 

The simplest equation for magnetic monopoles arises, if on~ equates 

the magnetostatic potential ~m in eq. (I) with the Higgs field. This 

is unrealistic, as the real Higgs field is expected to be massive and 

to yield short range interactions, in contrast to the electromagnetic 

field. Nevertheless, many interesting properties of magnetic monopoles 

survive in the limit of vanishing Higgs mass and self-interaction. 

Like B, also ~ has to belong to the Lie algebra of G, and for its 

derivation one has to use the covariant derivative 

such that eq. (I) is replaced by 

B = (9) 

Outside the core this again yields eq. (I), up to exponentially decrease- 

ing terms. 

Eq. (9) is due to Bogomolny I) . As we want to obtain the solutions 

of finite energy, it must be supplemented by the condition 

f B (1oi 
where the invariant bilinear form in the Lie algebra of G is not written 

down explicitly. Eqs. (9-10) imply that far from the monopole core ~ is 

a covariant constant. Moreover, due to the Bianchi identity the energy 

of the magnetic field can be written as a surface integral, 

such that non-trivial solutions require a non-vanishing field ~ at in- 

finity. Thus ~ indeed has the properties expected of a Higgs field. 

Typical solutions of eq. (9) can be visualized as systems of 

several magnetic monopoles of the same charge in equilibrium. The magneto- 

static repulsion of these monopoles is compensated exactly by the attract- 

ion due to the Higgs field. This effect does not occur for realistic 

monopoles, for which the Higgs attraction is of short range. Nevertheless, 

the monopoles of the limiting case described by eq. (9) share important 

properties with realistic ones, in particular their degrees of freedom. 

Monopoles have a translational degree of freedom, i.e. a position. 

They also have an internal degree of freedom, which can be seen in the 
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following way: Consider well separated monopoles and a sphere around 

one of them. Cut out the interior of S and apply an infinitesimal 

gauge transformation to it. The new potential inside S is 

(12) 

If the covariant derivative of ~ is sufficiently small on S, the new 

potential can be fitted to the potential outside S after a small ad- 

justment. The condition that e is approximately a covariant constant 

on S implies that it commutes with the holonomy group H . Conversely 
m 

each generator of the centralizer C(H m) of H m yields a possible ~. The 

procedure yields a physically distinct state, if ~ does not commute with 

the complete holonomy group inside S. According to eq. (9) one possible 

choice for ~ is ~. To complete the fit of the interior and the exterior 

of S after the transformation, each possible e must commute with ~, 

such that ~ itself yields a U(1) subgroup of the internal symmetry group 

of the monopole. For eq. (9), ~ is a generator of Hm, such that the in- 

variance of ~ under action of ~ need not be imposed separately. 

An investigation into the solutions of eq. (9) gave the first hints 

that the internal degrees of freedom of monopoles are given by C(Mm )2) 

Before it was generally assumed that monopoles transform under all of 

H, like ordinary particles. Only recently it was recognized that a glo- 

bal action of H meets topological obstructions 3'4) Indeed, consider an 

H bundle with a global action of H c H on the fibres. This action can be 
e 

used to fix the fibre coordinates globally up to an action of C(He) , i.e. 

the holonomy group H m must commute with H e- 

In general one has 

/ / 

H, s ~) ff~ , (14) 

(15) 

where H' and H' are non-abelian and H is abelian. For GUT monopoles 
e m a 

one expects e.g. 

H. = e (16) 

and 

I - I  . ,f u ( 2 J , 
(17) 
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Excitations of the H e degrees of freedom yield charges of electric 

type, i.e. the monopoles become dyons. The dyonic degree of freedom may 

be essential for the monopole phenomenology. I expect the monopoles 

ground state to have a U(1) c charge, due to interactions with fermionic 

matter. Such dyons would be confined. Only bound states of two monopoles 

and a quark should exist as free particles. This might help to explain 

the scarcity of monopoles in our universe. 

3. Complete integrability 

Now let us leave real physics and come back to the solution of 

eq. (9). Extending the space R 3 to an R 4 with standard euclidean metric 

and a dummy coordinate x ° and introducing the R 4 connection 

(18) 

eq. (9) can be written as the self-duality equation 

F ~ '~ F (19) 

for the curvature 

F " d A  * A A. (20) 

The components of F may be written as commutators of covariant deriva- 

tives, 

F r ,  

Eq. (19) has many special properties, which have been collected 

under the heading "complete integrability", though a unifying theory of 

completely integrable PDEs (or even ODEs) does not yet exist. In par- 

ticular, it can be written as compatibility condition for a pair of 

ordinary differential equations, i.e. a Lax pair. 

For this purpose we use the quaternionic structure of R 4 and the 

notation 

× 

where the quaternions q~ are represented by 2x2 matrices. Rotations of 

R 4 then take the form 
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which manifestly shows that R 4 vectors transform as (I/2,1/2) represen- 

tations of SO(4)=(SO(3)xSO(3))/Z 2. Eq. (19) means that F forms a (1,O) 

representation, whereas arbitrary antisymmetric tensors also have (O,1) 

components, which change sign under the Hodge duality operation ~. 

Writing 

(24) 

and introducing a new complex variable 

(~J CP " (25) 

the Lax pair for eq. (19) is given by 

(D~)A /(,,,,,)--0, A.~,2. <26, 

The proof uses the unit antisymmetric 2x2 matrix ~, which is the charge 

conjugation matrix for the quaternions, 

such that 

-- E[r  
(27) 

+ + 
Moreover, qHqv-qvq~ is anti-self-dual, due to the fact that according 

+ + 
to eq. (23) the expression x y-y x transforms as (O,1) representation 

of SO(4). The contraction of (O,1) with (1,O) representation vanishes, 

which completes the proof. 

Eq. (26) is a local expression of self-duality. If tha latter is 

valid in a domain UCR 4, it is compatible in UxCP I. Now let us intro- 

duce twistor coordinates by 

~2 ~ X T[ . (29) 

Eq. (25) yields 

x 7/-=/7. , (3oi 
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where 

(31) 

such that x can be recovered from (~,~). If these twistor coordinates 

vary over all of CP 3, the corresponding base space is S 4, which com- 

pactifies R 4. Otherwise one works within UxCP I~CP 3. 

The projection of UxCP I to CP I lifts the connection A to a connect- 

ion in UxCP I , with trivial components in CP I . In terms of the twistor 

coordinates one finds 

,D,<,, -- - + + ., 

,D  <,,,< : J ( " D . < 

Supplementing eq. (26) by the compatible equation 

X:,<,.) . 0 (34 

we see that X can be described as a holomorphic section of a bundle over 

a domain in twistor space. If one gauges A w and A ~ to zero, X becomes 

a holomorphic function of the twistor coordinates. 

Now take two solutions Xi of eq. (26) which are holomorphic for 

~.=0 i=I,2 resp. If eq. (26) is formulated in the principal bundle, 
1 ' 

such that the X are group elements, one obtains 

where 

(36 

can be interpreted as transition function in the holomorphic bundle 

over UxCP I. As the splitting of h into XI,X 2 is unique up to a function 

which only depends on x, one can recover from h(~,~) the Xi and by 

eq. (26) the connection A up to a gauge transformation. This construct- 

ion is due to Ward 5) . 

If one chooses h arbitrarily, the corresponding solutions of the 

self-duality equation will have unwanted singularities and belong to 

connections of the complexified gauge group G c instead of the compact G. 

Several procedures have been tried to restrict the form of h to the one 

which yields monopoles solving eqs. (9-10). One may start with a given 
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solution of eq. (26) and act on it with a Kac-Moody group. This pro- 

cedure has been developed independently by physicists 6'7) and, in the 

context of the mKdV hierarchy, by mathematicians 8). Another possibility 

is the choice of a suitable ansatz for h, which has been applied success 

fully in different guises 9'I0) 

If one wants to implement condition (10) from the start, it is 

advantageous not to work with D but with its quaternionic adjoint D +. 

The Dirac-Weyl equation 

D÷~ , (~ )  = 0 (37) 

for connections of the desired type has Square integrable solutions, 

and these are the ones we shall use. As the potential A does not change 

if x ° is translated, we may look for solutions of the form 

yc~) . ~xp { , . o ~ )  T ( , 9 .  (3~) 

For a given z let ~(z) be a vector whose components form a complete set 

of orthonormal solutions of eq. (37). Now consider a connection T in a 

new R 4 dual to the original one, 

T ~ T o ( ~ )  d~ ~ ~c~.)~p ~, (3~) 
where 

(40) 

and 

(41) 

Using the projector 

2 , 2 ,  + • "I" D ( D + D ) " D  + (42) 

and the fact that the self-duality implies 

D+D . ~9 ~. 

it is easy to see explicitly 11'12) 

self-dual, i.e. 

that the curvature F T 

(43) 

of T is itself 
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d-r -' [-"o7:7 : ,~,< -5 ~ .  

The matrix T ° may be gauged to zero. 

From orthonormalized solutions v(x,z) of the dual Dirac-Weyl 

equation 

(44) 

D 
,,#. 

7" V = 0 (45) 

one may recover the original connection A by 

A~ = f l"+2k I; d~ (46) 

f , ,  - ; / v + z  v ,dz. (47) 

Explicit calculations are easier than it may seem. The z integrations 

in eqs. (46-47) can be carried out algebraically 13) and the solution 
14) 

of eq. (45) may be reduced to some algebra and an ordinary integration . 

Most importantly, the non-linear ODE (44) is exactly integrable in terms 

of Riemannian theta functions, as it can be transformed to a linear 

flow on the Jacobian of an algebraic curve 15) . 

To prove these results, one uses the fact that due to its self- 

duality the connection T satisfies the compatibility condition for the 

Lax pair 

(D,-,,) 0. <,=> 

Using solutions of this equation, one can find the transition matrix h T 
16) 

for the holomorphic bundle associated to T, namely 

~ c.,~,) . <,p D..~ c,,'@,,J T'(..) (X.o-.'.~. - <"./.,j ) 
l "  

(49) 

Different choices of z O yield equivalent transition matrices. 

On the other hand, one may look for solutions of the form 

fcp,~<,, j : .,p c.k~,'J i<,.,,,j. (50) 

Then eq. (48) yields the linear algebraic equation 

f,< {-,-'< +,,<'<) f .  0 .  (51) 
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where 

~ = 7~T~I~ ~ . (52) 

Eq. (51) can be solved, if 

Due to the self-duality of FT, the determinant does not depend on z. 

Eq. (53) yields an algebraic curve in the complex space with pro- 

jective coordinates = and 

Eq. (51) yields a z-dependent line bundle on this curve, i.e. a flow in 

its Jacobian. From the construction it somehow should be obvious that 

this flow is linear, but I don't know an easy proof. 

The space with coordinates (~,n) is obtained from twistor space by 

the projection 

( , , ,  : 0 , - ,7 , ) .  <..> 

It can be interpreted as the space of oriented lines in R 3, given by 

a direction 

= (56) 

and a point x mod u. Note that u and y determine each other by the 

equation 

. - %  , . . i  • ,,,..li 

From eq. (48) one obtains the ODE 

+:  -,) ,;  f :o. 

(57) 

(58) 

Thus the holomorphic bundle on twistor space can be reinterpreted as a 

holomorphic bundle on the space of lines in R 3, a construction due to 

Hitchin 17) . He introduced the spectral curve of the monopole as the set 

of lines for which eq. (57) has a square integrable solution. It turns 

out that this curve is identical to the one given by eq. (53). Actually 

this has been proved only for the case where there is a single spectral 
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curve, in particular for G=SU(2). In general eq. (44) is valid apart 

from some points on the z axis and yields a finite number of spectral 

curves. In this case the situation is less clear, though partial results 

have been obtained 18) 

The set of lines which constitute the spectral curve has an envelop 

in R 3 which is the real section of a possibly reducible curve in C 3. 

This envelop consists of isolated points and closed curves. It has a 

direct physical significance: In a suitable gauge the Higgs field has 

the form 

where ~alg is an algebraic function of x. Now the envelop is just the 

locus of singularities of ~alg" If one continues ~alg around the closed 

curves of the envelop, it becomes multivalued. The reason is the follow- 

ing: ~alg is constructed by considering all oriented lines of the 

spectral curve through a given point and selecting just those which 

run towards the monopole positions. Far away from these, this selection 

is unique, but it cannot be maintained, when one meets the envelop. The 

envelop and its relationship to the algebraic part of the Higgs field 

has been studied both from the point of view presented here 11) and from 

Hitchin's approach 19) 

Finally I would like to mention two results for G=SU(2). Donald- 

son has considered the moduli space for the corresponding monopoles 20) . 

It turned out to be the same as the space of rational functions of 

CP I. Rouhani has obtained the transition function h for the connection 

A in terms of T and v, such that a closer comparison to other monopole 

constructions now may be possible 21) 
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MULTIMONOPOLES AND THE 
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Hungary. 

I give an overview on generating self-dual multimonopole solutions ap- 

plying soliton theoretic methods, and point out other possible uses of 

these ideas. 

1 - Introduction. 

It seems that substantial progress in today's physics is more and more 

linked to the understanding of the nonlinearities of proposing yet ano- 

ther model of the world. There is no hope to understand the strong in- 

teractions in a nonperturbative way. Spontaneously broken gauge theories 

(SBGT) provide us with an attractive framework for the description of 

electroweak interactions and for the unification of strong and electro- 

weak forces. SBGT's are perturbatively renormalizable however these the- 

ories also contain "topological excitations" (vortices, monopoles) at 

least at the classical level. In other wordsjthere are topologically 

inequivalent sectors in the space of all classical configurations. Also 

in four Euclidean dimensions in pure gauge theories there are topologi- 

cally nontrivial solutions (instantons) which give the vacuum a rich 

structure. It is of course an open question what is the role of classi- 

cal solutions in the full quantum theory. 

in Lhis talk I ...... ~ ..... ~**~±~ ~v .... overview of the method our group in Buda- 

pest [Z. Horvath, L. Palla, P.F.] has developed to generate fully expli- 

cit solutions in SBGT in 3 dimensions corresponding to static multimono- 

poles (that is monopoles with magnetic charge greater than i). 

These solutions exist only under rather special circumstances. The Higgs 

field must be in the adjoint representation and there should be no Higgs 

potential. Although this last condition seems to be rather unphysical, 
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introducing supersymmetry which is motivated by the Montonen-Olive con- 

jecture, automatically forbids Higgs self-interaction terms. 

Up to now one can find only the solutions of the Bogomolny equations 

[i] although it was shown by Taubes [2] that static, finite energy non- 

trivial solutions exist which do not satisfy the first order Bogomolny 

eqs. The key to solve the Bogomolny eqs. is the existence of an associa- 

ted linear system which can be succesfully tackled by a generalization 

of the "inverse scattering" method of Zakharov-Shabat and al. [3]. 

The full second order field equations also have an associated linear 

system but one has to go to 8 dim. to write it down and no explicit so- 

lutions were generated but it seems worthwhile to pursue further these 

ideas. 

I think that understanding the mathematical structure of gauge in a 

deeper way it will prove relevant for the real world as well. 

2 - Connection between monopoles and self-dual gauge fields. 

We consider an SU(N) gauge theory with scalar fields in the adjoint re- 

presentation in the limit of vanishing Higgs potential. 

The Lagrangian density is 

L = - 1 Fa Fa~ _i (~ ¢ )a (D~ ¢)a (i) 
4 u~ 2 

where 

Fu~a = ~u A a - ~A% _ fabc A b A c 

(Du @a = ~u ¢ a _ fabc A b ¢c 

The hamiltonian density for static configurations with no electric fields 

(Aa = o) is 

1 Faij 1 (Oi +)a (oi~)a (2) H :~aj +y 
([i,j = 1,2,3 ; a = 1 .... N] 

The field equaitons of this theory are solved by configurations satis- 

fying the Bogomolny equations : 

Faij :- Sijk (Dk ¢)a 3) 

The engergy, E, can be written using the Bogomolny equations as 

E= f~d3 x=--ll 12d3x 
[9 2 •3 Ale 4) 

where 
N a a 

I¢I 2 = Z ¢ ¢ and A = ~i 3i 
a=l 
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The topological charge, n, is given by 

n = lim 1 S dSi 8i I ~ I 2 (5) 
r+~ 8~V r=const. 

Since the asymptotic boundary condition ~ I#I=v is imposed, for a con- 

figuration with topological charge n the large distance behaviour of 

I~I is 

I~I ÷ v n r + °(~ 2) as r+~ (6) 

One should keep in mind that (6) alone does not guarantee that the topo- 

logical charge is indeed n due to the presence of possible singularities 

In the rest of this article I take the vacuum expectation value of the 

Higgs field, v = i. 

Let us consider now a pure SU(N) gauge theory with Lagrangian 

L = - ~ F a Fapv 
4 pv 

The Euclidean space (~4) field equations are solved by self-dual (SD) 

configurations which satisfy 

a a = 1 epvyc Far c F = *~v Y 

If all the gauge fields ~ are independent of one coordinate ("Euclidean 

time") the self-duality equations (SDE) reduce to 

F~j = - Eij k (DkAo)a 

where we recognize the Bogomolny equations (3) reinterpreting A~ as the 

Higgs field. 

This formal connection between the SDE and the Bogomolny eqs. has extre- 

mely interesting and useful consequences. The spherically symmetric, 

charge, one monopole [4] has a so called instanton chain representation 

[5,6~ that is a special multi-instanton configuration which exactly re- 

produces the monopole field in the limit when the number of instantons 

goes to infinity. (Clearly a finite energy configuration in ~3 has infi- 

nite action in R4). This observation has a far reaching generalization, 

namely any monopole solution has such instanton-chain representation 

and moreover these chains can be explicitly constructed [7]. 

As the first step towards quantizations is to study the fluctuation spe- 

ctrum around the classical solutions it is very important to note that 

the connection between the "static" Euclidean pure Yang-Mills fields 

and the monopole model (2) can be easily extended to the small oscilla- 

tion problem [6]. Therefore using the results of instanton theory one 

can construct the solutions of the small oscillation problem around 

a multimonopole configuration if there exists a instanton-chain repre- 

sentation. In view of this remark the results of Chakrabarti [7,8] seem 

especially important. 
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Let us now introduce the associated linear system to the SDE. Defining 

complex coordinates as : y = x I + ix 2, z = x 3 + ix 4, ~ = x I -ix 2, 

= x 3 - ix 4 the SDE take the form [9] 

Fy z = Fg~ = 0 

Fy~ = Fz~ = 0 

The first two eqs. are solved by 

Ay = - D,y D -I , A T = D +-I D,y+-- , etc 

where DE SL(N,~). Introducing the gauge invariant quantity 

= D+D (7) 

The last equation reduces to [i0] 

(g,y g-l) ~ + (g,z g-l)~ = 0 (8) 

It is easy to see that g is a hermitian matrix with unit determinant. 

The key observation is that eq. (8) is the compatibility condition for 

the following linear system [ii] 

(l ~ + ~)~ = By ~ (9) 

(-~+ ~z)~= Bz 

where By = g,y g-i , Bz = g,z g-i , ~ = ~ (l, y, ~, z, z) is an NxN matrix 

function for which we impose the boundary condition 

(I = 0, y,~,z,z) = g 

The parameter I is the so called spectral parameter. 

3 -A solution generating method for the SDE. 

In what follows we show in detail haw can one construct solutions of 

the linear system (9) which enables us to generate the multimonopoles. 

We need the following input for our construction : 

a) a known solution of (8) denoted by go 

b) the corresponding solution of the linear system (9) 

4o( I ) satisfying ~I=0) = go 

Given a) & b) we look for solutions of (9) in the following form 

~( ~ ) = x (~) ~) (10) 

and the next crucial input is the following ansatz for x(1) : 

n Rk 
X (I) = 1 + ~ (ii) 

k=l 

where Rk'S are NxN matrices independent of I . In other words X (l) is 

a meromorphic function in the complex I plane. Using (ii) as we shall 

see below the construction of the Rk matrices becomes completely alge- 

braic. The equations for X (l) are : 
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O 

(I ~ + ~) X" X -I + X By X -I = By (12) 

0 X_ 1 = Bz (-I ~ ~ + ~z) X " ×-i + X Bz 

Here we introduced the obvious notation Bz° = go,z go -I , By ° =go,y go -l- 

From (ii) one can easily deduce that 

Rk X -I (u) = 0 (13) 

and (13) implies 

Rk = n(k)om(k) ; X-I (Uk) = ~(k) o p(k) 

m(k). ~(k) = I m(k)~(k) = 0 (14) 

a=i a 

In fact in (14) we assumed that the gauge group is SU(2). The situation 

for SU(N) is analogous but the formulae become rather messy. See [12~ 

for details. The LHS of (12) would contain terms with second and first 

order poles at I = ~k whereas the RHS of (12) is analytic in ~ . There- 

fore the residua must vanish at the pole sites : 

Absence of second order poles : 

~k ~ Uk + ~y ~k = 0 

-Wk ~ Uk + 8z ~k = 0 

The general solution for the poles, Uk, is given as 

h( Uk Y-~, Uk ~+Y, Uk) = 0 (15) 

where h is an arbitrary (nice) function. 

Absence of first order poles : 

o 

(Uk Rk,~ + Rk,y) ×-l(uk) + RkBy X -I (Uk = 0 
(16) 

o 

(-Uk Rk,~ + Rk,z) x-l(~k ) + RkBz X-I (uk = 0 

From eqs. (16) we obtain the vectors m (k) : 

m(k) M~ k) [~o I (~k)]ba 

where M (k) = M (k)(Uk Y-~, u k{+Y, Uk) are otherwise arbitrary vectors. 

To complete the construction of the matrix R k we have to determine the 

n (k) vectors. This can be achieved using the hermiticity of the matrix 

g. This hermiticity property ensures that our solutions will be in SU(2) 

indeed. We impose the following condition : 

g = X (I) go ×+ (- i ) (17) 
T 

which guarantees the hermiticity of g. As a consequence we see that if 

X(A) has a pole at ~ = uthen × -i(~) has a pole at i = _ i. The n (k) 

vectors are determined taking the residua at ~ = - 1 of eq. (17), we 
Uk 

get 

n(k) £= [i= ~£i go ~ (~) ( P-l)g k 
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where the matrix p is defined as 

Z m(k)(go)dcm(~) 
d,c 

( ~ )k£ = (18) 
1 +~k ~£ 

This way we completed the construction of the R k matrices and we have 

a new solution ~(k) of our linear system. The matrix g satisfying (8) 

can be written as : 

gab (go)ab ~ 1 -i £ k 
= - ~ £k Na Nb (19) 

k,£Pk ~£ 

where N k = m(~) (go)ba- There is still one problem, the determinant of a 
g as in (19) is not unity. 

Although to calculate detg is not entirely trivial here I just quote 

the result (for details see [12]) : 

det g (-i) n ( n 1 = H ) det go (20) 
k=l l~k 12 

So defining the normalized gn as 

n 
gn = g H E u kl (21) 

k=l 

it still satisfies (8) and det gn = (-l)n det go- Therefore if we start 

with a go having det go = i, after an even number of steps detg n = lho- 

wever after an odd number of steps detgn=-i which is a problem. In this latter 

case one has to start with a seed solution go where detgo=-l. This corresponds 

in general to a complex solution. To generate the monopoles we start with a dia 

gonal go and there it is sufficient to multiply go with a constant diagonalma- 

trixto change the sign of detg o. 

Now it is very easy to adopt the above results for generating solutions 

of the Bogomolny eqs, which in our notations look like as 

(g,y g-l)~ + (gz g-l) z = 0 (22) 

the associated linear system is 

(l a z + ay )~ = g,y g-i ~ (23) 
(-l ay+ a z) ~ = g,z g-i 

1 
where y = ~ (x I + ix 2) , z = x 3 

The formulae for g are the same as in eqs (19,21) only the characteris- 

tic variables and the poles change a bit : 

The implicit equation defining the poles (15) becomes : 

h (~ (u), ~ ) = 0 (24) 
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where 

y (p) = y --- - z 
p p 

Also M k = M k ( y( P k), ~)- 

This completes the algebraic solution generating method of the SDE (Bogo 

molny eqs.). The only analytic work to be done is to solve (23) to get 

4o(~), which is not very difficult for simple seed solutions. 

4 - Construction of monopole solutions. 

I proceed now to show how to apply the formalism presented in section3 

in practice. First I generate the axially symmetric monopoles and then 

the general charge n solutions without any symmetry. 

The reduction of eqs. (22) & (23) to axial symmetry is rather interes- 

ting. Then g = g(p,z) (x I +ix 2 = p e iy) and assuming that g is a real 

symmetric 2x2 matrix eqs(22) reduce to the eqs. of an SL(2,R) sigma 

model (in 2 dim.) which are also equivalent to the Einstein eqs. descri- 

bing stationary, axially symmetric space-times (in vacuum). These eqs. 

are known as the Ernst eqs. [13]. When we impose axial symmetry on the 

linear system (23) there is a subtlety ; namely4 (1) also depends on 

the polar angle in the following way : 

4(l,p,z,~) = 4( le i~ , p ,z) 

Defining ~ = le i~ we obtain from (23) the following linear eigenvalue 

problem : 

+ Z g-i 4 ~z +4,~ p 4,~ = g,p 
72 g-i (25) 

-~ 4,p + -- 4,~ + 4,z = g,z 4 
P 

It is easy to show that (25) is equivalent to the linear eigenvalue pro- 

blem for the Ernst eq. "pulled out of a hat" by Belinski, Maison, Zakha- 

roy. [14]. It is important to note that in the axially symmetric case 

the pole eqs. have a unique solution (h is a completely determined func- 

tion in this case) : 

-w+z ± 4w-z~ +p 2 -w+z± R(w) -i~ (26) p= = e 
2y p 

where w is an arbitrary constant. As we shall see the value of these 

constants is completely fixed from imposing regularity on our solutions. 

This corresponds to the following choice of the function h(y,p ) in the 

pole eq. (24) : 
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h = y(u) + w = 0 (27) 

To generate the charge one monopole we now have to specify the seed 

solution go, then solve (23) to find ¢o(I). It is natural to choose a 

go describing a Higgs vacuum, that is [¢I 2= 1 and F~j = 0. We made the 

following simple choice for go : 

go = diag (e z , e -z) (28) 

However this choice for go is clearly not unique, that is there are 

other go's also corresponding to the Higgs vacuum but not all of them 

gives the same result for the new gn- It is easy to solve (23) for 

¢ o (I) : 

¢O(I ) = diag (e z- ly , e -z + ~) (29) 

We now apply one step to 40- As we remarked earlier an odd number of 

steps changes the sign of det go, so we multiply go with C=diag(l,-l). 

It is easily verified that g as given in (20) depends only on the ratio 

M~ k) M~ k)-I , therefore without loss of generality we can take 

Mi k) (exp [-fk(y,l )], exp [fk (~,I)J ) (3O) 

In the axially symmetric case the fk's are just constants. If we make 

one step only rk£ is a ixl matrix which as calculated without any pro- 

blem : 

P= ~ii = @2 sinh(R-=) (31) 
z+R R 

where R = ~ ,  ~ = f + [. A necessary condition for the regularity 

of the solution is the regularity of ['I and the existence of r -i In 

(31) this implies ~ =0. From (20), (21) we obtain gn : 

e 2 Re R 
gll = -~- (z + R - ~ ) 

=-e2 (z + R + R~--R ) 
g22 p sinhR (32) 

R 
g12 = g21 

sinhR 

One can immediatly verify for (32) that det g = i. 

Any hermitian 2x2 matrix with unit determinant can be parametrized as 

g = (33) 

For g given by (32) we get 

f .... p e -2 
z-R cothR 

¢= f R (34) 
p sinh R 
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One can compute from (34) the components Of the gauge potentials and 

verify that we indeed have the spherically symmetric, charge one monopo- 

le. I note here that Chadrabarti found a simpler form ~7] for the charge 

one monopole, mainly because his seed solution is still spherically 

symmetric. Also, I would like to emphasize that the choice of go is cru- 

cial. For example choosing go = diag (pk e z, _ o~ e -z) the resulting 

new g after one step is a singular solution, very different from the 

monopole although go also corresponds to the Higgs vacuum. It is also 

clear that the drawbacks of the method I presented are the following : 

One has to choose parameters to guarantee the regularity of the solu- 

tion (in other words we generate local solutions) and it is very cumber- 

some to compute the gauge potentials from the matrix g. When one is wi- 

thin axial symmetry, one gets around this last problem in two ways. 

Either one applies B~cklund transformations or introduce the so called 

superpotentials [15~ from which it is relatively easy to get the length 

of the Higgs field J#12which virtually contains all the relevant infor- 

mation about the solution. I will say a few words about these later. In 

the general (non - symmetric) case only the present method works. 

Let us now proceed to construct the axially symmetric charge n monopole 

configurations. Using (29), (30) we get for ~ij : 

1 [exp{-z-(fi+{j)+~iY+~j~ +(-l)nexp{z+fi+~j-~iY-~jy}l (35) 
Pij l+~i 

where we multiplied go with C = diag(l,(-l)n). The poles, Uk, satisfy 
n 

(Y(U) - Wk) = 0 (36) 

k=l 

Demanding regularity of J~Jz fixes the values of W~k'S and restrict the 

possible values of the constants fk 's. The simplest choice for the 

fk's is fk = 0, k = l,...n. 

Then the Wk'S are : 

~k = in n + 1 - 2 k 1 S k s n (37) 
2 

There are other allowed choices for the fk's, however they do not give 

any free parameter. This is not surprising as it was shown in 116] that 

axial symmetry strongly reduces the degrees of freedom for finite energy 

monopole solutions so the only possible configurations are "superimposed' 

monopoles at a single point. This means that the number of parameters 

for this case is five. (3 parameters for the location and 2 for the 

direction). Since we fixed the position of the monopoles at the origin 

and the symmetry axis is the z axis we expect not to have any free para- 

meters. As it was shown in [17,18] any n-monopole solution belongs to 

a 4n-i parameter class, so the next step in our program is to look for 
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these more general configurations. It is essential to find the correct 

poles. 

The only guideline we have is the form of h (y,u) in the axially sym- 

metric case, (36). It is natural to take again for h(y,~) a polinomial 

of degree n in yand to restrict the degree of the equation for u to 2n. 

Then the most general h can be written as 

n 
h (~,~) = E ai(u) yi (38) 

i=l 
n-i 

where ai(~) = ~ (bj ~ + cj u -j) 

j=o 

h (y,u) contains 2(n+l) 2 -2 free parameters. In (30) the fk's are not 

constants any more, however the "minimal deformation" of the axially 

symmetric M(~)'s is to assume that all the M(~ 's are described by just 

one function : 

fk (y,l) = f (y,l) k = 1 .... n 

In addition we make one last assumption which is quite natural, namely 

that f(y,l) is analytic at I = 0, i.e. 

f (~,I) = E fi (I) ~ I) i 

i=o 
1 

As in (20), (21) onlY~o~k) and M k (~k, ~( ~))'s are present we effecti 

vely need the values of the arbitrary function, f, at the pole sites, 

~k 's. Since the algebraic equation defining the poles is of degree n 

in y, we can express all y m's when m>~l in terms of yi (i=0,...n-i 

at the pole sites Uk- Consequently one can uniquely associate with 

a~y power series in ~a polinomial of degree n-i (iny) yielding the 

same values at all pole sites, ~ k. Therefore without any loss of gene- 

rality we can take f as a polinomial of degree n-i in y. 

A necessary condition for the regularity of the solution is the non- 

singularity of rij when ui = - ~j-l. The expression we get for I ij is: 

~ij = (i+ ~i ~%1) [e aij +(_l)n e_~ij] (39) 

where ~ij = 7(ui) + ~ ( ui-l+~)-f(ui,Y (~i))-[( uj,7 (uj)) 

The regularity conditions imply that 

e( ~, Y(~i)) = i~ wi (n) (40) 

where = (I,~(I)) =y- f( ~,y(I)) - [ (-~ -i, ~(_~-i)). 

e is a polinomial of degree n-I in y : 

n=l yi 
= ~ ~ (~) 

i=0 
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Assuming that ei (1)'s are analytic in an annular domain, using Cauchy's 

formula we get for f(l,y) : 

f (1,7) = 1 ~ e(~'Y) dc +y (41) 

The next step is to compute ~ explicitely. Since e is a polinomial of 

degree n-i with its values given at n points (in eqs (40)) it is unique- 

ly determined by Lagrange's interpolation formula 

~( ~ y(1)) = i~ Wj (42) 
=i 

where we wrote h as 

n 
h = ~ (y-yi(1)). 

i=l 

y(1) - yi(l) 

i~j ~9 I) - Yi (I) 

Since a (~, ~ p)) = ~(_{-i,~(_ ~i)) by construction this implies extra 

constraints for h, namely 

h = (X,~) = ~ (~(-~i), _~-i) 

Furthermore in eq. (42) the wi's should satisfy 

wi(k) = -Wj (k) if ~(I) = ~ (_~-i) 

The wi(k)'s are determined from the axially symmetric case yielding 

Wi( ) n+l-2i l~i~n 
2 

This implies that the number of free parameters would be halved, so h 

contains only (n+l)2-1 free parameters. From eq. (41 we obtain the fol- 

lowing constraints for the ~i( l)'s : 

~i(~) d ~ = 0 
~j+l 

j=-i+l, . . . , 1-1 

2<i<n-i (43) 

(44) 
I (~) 

1 
d~ = 1 

2 ~i J 

The constraints (43), (441.4express the fact that f is a polinomial of 

Iy and they represent ~(Zi-l) +i additional relations among the 
6=z 

(n+l)2-1 free parameters in h.Consequently our solutions depends on 4n-i 

parameters. It reduces to the axially symmetric case by construction when 

a i(p)'s are constants, independent of u (uniquelydetermined by w i's) ° 

It is not very difficult to derive the asymptotic behaviour of I#I using 

8z Pi ~- -r-i Pi: 

I¢I ÷ 1 n - ~ as r ÷~ 
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Unfortunately it is very hard to get explicit formulae for the length 

of the Higgs field for a general n monopole solution. One should para- 

metrize the constraints (43),(44) in a clever way and solve the algebmic 

eqs. (of degree 2n) for the p's. For the n=2 case we have numerically 

computed I~I and proved that it is nowhere singular [19]. 

Let us describe the separated two monopole in some detail. In this case 

f(1,y) can be easily computed. We took h as 

h = 72 + A (~2+~-2) + B (45) 

where A,B are real constants. We note that using similar arguments as 

in [20] h can be always reduced to this form. The only constraint now 

is (44) which implies the following relation between A and B 

/-~-= 1 K' 2_88~, A = ~ 8B, -i < 8 ~ 0 

where K(m) is a complete elliptic integral of the first kind with para- 

meter m [21]. For the choice (45) of h f is given by 

_ 71 ~ ~ [ A(~ 4 + i) + B ~2]--½ (46) 
f(l, 7) - 4"--i- I ~, .~1 

In the case when 8 is negative the integrand in (46) has four branch 

points on the real axis. We deform the contour of integration in (46) 

to the cuts chosen to run on the real axis from - = the smallest branch 

point and from the largest to ~ . As a result we get 

f = (1,7) = Y [K (~--4) --~ (12~2\6)) 

sin6 = ~2 ~= /_8-~ + /B-2 11" 

and H(n\~) is the complete elliptic integral of the third kind [21]. 

The only remaining free parameter, 8 , in our solution determines the 

location of the zeroes of I ~I on the x I axis as 

X 1 = ± ~m K(m) , m = 288 
I+B 

One easily sees that the distance between the monopoles goes to zero as 

8 + 0 . The separation of the monopoles, d, tends to infinity as 8 ÷ -i 

d ~ -in (1+8). 

I would like to say a few words about the superpotentials [15] which 

are very useful quantities for computing l~I 2 , although up to now they 

seem to be effective only in the axially symmetric case. As I remarked 

earlier I~I 2 contains virtually every thing we want to know about the 

solution. AI~l 2 gives the energy density, etc. I~I 2 is easily expres- 

sed in terms of the g matrix as 
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1 
i#i2 = ~ Tr (g'z g-l)2 47) 

In the case of axial symmetry we can define a function T in the follo- 

wing way : 

~p = ~ Tr [(g, p g-1)~(g~g-l)2] 

48) 

= ~ Tr I (g, p g-l)(~zg-l)i T'Z 2 

The integrability conditions of (48) are satisfied if g (p ,z) solves 

(22). Then as one can verify 

- AT= Tr (g'z g -I)2 (49) 

2 + ~ + 1 ~p where A = 2 0 

It seems to be rather remarkable that one could find a completely expli- 

cit formula for T in the case of SU(N) gauge group. I don't want to write 

out here (see [15] for details) the general expression for T, what I 

think is important, that • = T O + ~ det + ~ F, where • o is potential 

for go, F is a complicated expression depending only on p , [, p . For 

the one monopole we get 

T (i) = -- !2 p2 +~}~ {~-0 ~ sinh R} 

which is a remarkable simple formula. It is perhaps worth quoting L (2) 

for the two-monopole as well : 

T(2) = ~2(i_~2)(i + n~+in{(l+q2 )(i-< 2) [ cos 2 (~-~) _ cosh 2 (~-n)3} 

8 $2 + n2 1 -- ~2 1 + n 2 

where n ~ are oblate spheroidal coordinates : 

p + iz = w /(i- ~9 (i+ n 2) O ~ n ~ ~ 

-i ~ 1 

where the value of w = -- was fixed to ensure finite energy. 
2 

The main advantage of the superpotential is that it is much simpler than 

the matrix g and for SU(N) N > 2 gauge groups this is essential in prac- 

tical applications. 

In the SU(2) case we found the axially symmetric n monopole solutions 

using B~cklund transformations in a completely explicit form [22]. The 

BT's were generalized(still within axial symmetry) to arbitrary compact 

simple groups by Bais and Sasaki [23]. What is still lacking is their 

generalization for the SDE in 4 dimensions. These generalized BT's should 

of course reduce to the known ones in the axially symmetric case and they 

would hopefully facilitate to a certain extent to compute the monopole 

solutions (and perhaps also the instantons) in a more tranparent and 

direct way. 
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5 - The Riemann-Hilbert problem and its significance for gauge theories. 

First we define the regular matrix Riemann-Hilbert problem (RHP). 

Consider a closed curve ~ in the complex I plane. Define on P a ma- 

trix G(I) analytic in an annular neighbourhood of ~ and the problem is 

to find X1 (I) and X2 (I) analytic inside (resp. outside) ~ satisfying : 

f~ ( i ) × 2  ( i )  = C ( I )  , I ~ ~ ( 5 0 )  

We assume that det× i ~ 0 in their domains of analyticity. A simple way 

to connect our linear system (9) with the RHP is the following : 

for any two solutions ~i' ~, of (9) : 

(1~+~y) (~i I ~2) = 0 

(-I ~+~z) (~ ~2 ) = 0 

that is 

$2 =~i G (I, -ly+ [, Iz + ~) (51) 

1 
Noting that if $ (I) solves (9) then g~ +-i(_ ~) also solves i9) we have 

an involution acting in the solution space of (9) / we used the fact 

that g = g +/, thus 

g~ +-i (i) = ~(I) G (I, -ly+~, Iz+~) (52) 
I 

+-i(i) 
If ~ is analytic around I=0 then g~ -~ is analytic near I == , 

therefore G is analytic in the overlapping region of the two domains. 

Let us now suppose that there is given a nonsingular matrix G / i.e. 

det G # 0 / satisfying 

(I~ + ~y) G = (~%~+ ~z) G : 0 

G (I)= S + (-~) 
1 

and analytic in an annular neighbourhood of the unit circle. Split G 

according to (50) into the product of two matrices with nonvanishing 

determinants analytic inside (resp. outside) the circle with the addi- 

tional property that ×2(I) is normalized to 1 at I = =. This normaliza- 

tion is needed to ensure uniqueness of the solution. Acting now with V i 

( % = I ~+ ~, V 2 = -I~+~ z) on eq. (50) we get 

vi~.~ = vi ×2. ~ le C (53) 

Eq. (53) defines the analytic continuation of both sides from ~tQbe the 

whole complex plane. As ×2 is normalized to 1 at infinity, by Liouvil- 

le's theorem both sides are independent of I. Therefore 

V i X I . f~ = ~ X2.fl 2 = B i (54) 

where the matrices B i do not depend on I . The compatibility of (54) 

implies 
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By = g,y g-i , Bz = g,z g-i 

with g satisfying (8). To get all solutions of the SDE one should consi- 

der a RHP with zeroes, that is allow det×i = 0 in their domains of ana- 

lyticity. 

The regular RHP is equivalent to the following linear singular integral 

equation : 

~_ [ p f l  o(~ d~ + i] T(I ) + o(I) = 0 ~ E ~ (55) 
~ - l  

where T(1) = [G(l ) -11 [G(1)+I], and we used the following integral repre- 

sentations for ×i(1)'s : 

XI(I) = 1 + fC ~(~-I ~) d ~ inside 

(56) 

X 2(I) = 1 + ~ ~(~---~) d~ outside 

The RHP with zeroes is equivalent to a system of linear integral equa, 

tions coupled to algebraic equations determining the residua of×i(l )'s 

at the pole sites [3]. 

It we take in (52) G(1) =~o ~ ~o -I where ¢o is a solution of (9) and 

G O = G O (I, -I y+~, Iz+~), Go+( - ~) = ~ (I), det G O = i, the solution 

of this RHP generates a new solution of the linear system (9)in the form 

= ×i (~) ¢o ( ~)- 

The construction of self-dual solutions described in the previous sec- 

tions corresponds to solving the RHP with zeroes only. This means that 

we take G O = i, and construct a meromorphic X(l ) with simple poles only. 

These solutions are referred to as "purely solitonic" in analogy with the 

known two dimensional models. 

It is not known how to solve the RHP explicitly for an arbitrary matrix 

G. However, in some special cases when G is diagonal or triangular the 

splitting canbadone explicitly. In fact theAtiyah-WardAns~tze [24] corres- 

pond to splitting a matrix of the form 

x - k  

T h e  s p l i t t i n g  o f  G k ,  a (X) 8 (X) = G k ,  w a s  c a r r i e d  o u t  i n  d e t a i l  b y  C o r -  

rigan et al. 1201. As it is clear form the above the RHP is extremely 

powerful to generate solutions of the SDE. Also from the RHP an infinite 

dimensional invariance group (of the Kac-Moody type) can be constructed 

[11,25], with infinitely many conserved quantities. It is an extremely 

important problem to try to extend these ideas for the nonselfdual sec- 

tor. Isenberg et al. [26] and Witten [27] gave a twistorial interpreta- 

tion of the second order (sourceless) gauge field equations. We were able 

to derive RHP's for the nonself-dual sector using Witten's ideas [28]. 
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In an eight dimensional space with coordinates a i, b i i = l, ... 4 we 

consider the foliowing system of equations : 

Faia j = *Faia j ; Fbib j = -*Fbib j ; Faib j = 0 (57) 

i_l It can be verified that solutions of (57) satisfy on the x -7 (ai+bi) 

diagonal subspace the four dimensional source free Yang-Mills equations 

D F~ ~ = 0 

First we were able to linearize (57) : 

DI~ = (-11 892 + ~yl)~ = g'yl g-i ~ 

D2~ = ( Ii ~i + ~y2)~ = g'y2 g-i 
(58) 

D3 ~ = (-12 ~2 + ~zl) ~ = g'zl g-i 

D4 ~ = ( 12 ~i + ~z2) ~ = g'z2 g-i 

where Yl = bl + ib2 ; Zl = al + ia2 , etc, 

g = D+D , D = D(Yi,Z i) ~ SL(N,C) and the gauge fields, 

Au i = - D,u i D -I u = y,z, A~i = D +-I D+,ui . and (57) becomes 

(g,u g-l),~ 1 + (g,u2 g-l) ~2 = 0 u = y,z (59.a) 

(g,~i g-l),~j = (g,zi g-l) yj = 0 i,j = 1;2 (59.b) 

Now one can derive a RHP for eqs. (58), however since there are two spec- 

tral parameters here, (11, 12) the resulting RHP with two variables is 

very difficult to solve. / see [28~ for details /. 

We were able to introduce a RHP with one variable only, it is possible 

to take in (58) 

12 = 113 

Then we can write down the following RHP : 

g X+-! (_ 1 -i ~)go = X (I) %(1)So(1,1yl+~2 IY2-~ '13zi +[2' 13Z2-~i) "~ o-1(I 

(6O) 

Although we were not able to generate new solutions of the Yang-Mills 

eqs. with (58) or (60) this approach should be further studied, in parti- 

cular to derive a Kac-Moody-type algebra for the Yang-Mills eqs. Also it 

would be important to connect our approach to the ideas of Volovich ~29]. 

6 - Conclusions and outlook 

I tried to describe here the soliton-theoretic framework we developed 

to produce explicit solutions of the SDE. We were mostly interested in 

multimonopole solutions, describing static finite energy monopoles of 

like charge. These solutions exist due to the fact that the net force 
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cancels between these monopoles. 

I showed h~w to construct the most general charge n monopole configura- 

tion depending on 4n-i parameter. 

The solution is extremely complicated. Also to prove that it is regular 

everywhere is very hard and for the simples nontrivial case (the separa- 

ted two monopole) we proved it numerically. Presumably Nahm's method 

is the best to prove that these solutions are indeed regular [30]. 

If we impose axial symmetry the solutions are completely explicit, alt- 

hough then it is much better to generate them by B~cklund transformations 

In the SU(2) case on can exploit the equivalence between the Bogomolny 

eqs. and the Ernst eq. of general relativity to use the BT's for the 

Ernst eq. 

Further connections exist among the Einstein eqs.,the SDE and non-linear 

sigma models see for example [31]. 

I did not give an exhaustive review here, as that would easily fill a 

book, and I did not talk about other methods for solving the SDE, but 

as Nahm also gave a talk I think it is not necessary. 

Clearly there are many things to be done. It would be very important to 

find time dependent solutions for example. In 2.1 dim ~pn models a step 

was made in this direction. [32]. 

Even more important is to clarify the structure of the full Yang-Mills 

equations. 
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PART 1 : Topological aspects of Yang-Mills fields in curved spaces. 

(Exact solutions). 

PART 2 : Flat space instanton chains with monopole limits. 

As will be seen, the static, spherically symmetric, conformally flat 

de Sitter space provides the link between the parts 1 and 2. But Part 

2 can very well be considered entirely separately. To avoid making 

this report longer I have assumed certain results as known. In Part 1 

this includes standard ones in general relativity as well as various 

aspects of gravitational instantons. In Part 2 familiarity with stan- 

dard constructions of instantons and of selfdual monopoles, which 

emerge as limits in our formalism, has been assumed. I present exlusive- 

ly our results and not comprehensive reviews of these domains. 

Part 1 : To explore in its full richness the topological possibilities 

of gauge fields one should allow for simultaneous presence of gravita- 

tional and Yang-Mills ones. Thus if the integral topological indices 

of the Yang-Mills field for a flat Euclidean base space is associated 

with the structure of the vacuum, one may ask among other questions of 

interest, how this spectrum might be modified when the base space itself 

has non trivial indices. Exact solutions of SU(2) Yang-Mills fields 

are presented for metrics corresponding to well-known gravitational 

instantons. Such selfdual solutions, with vanishing energy momentum 

tensor T~ for Euclidean signature of the base space, do not perturb 

the metric. Thus they provide solutions of the combined gravitational 

Y.M. system. New topological possibilities, such as finite action SU(2) 

fields with fractional indices for many centre metrics are displayed 

explicitly. As another type of possibility non selfdual, finite action 

solutions are constructed explicitly on Schwarzschild and de Sitter 

metrics, the solution being real in the first and complex in second case 
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respectively. It is also shown how various meron type solutions in flat 

space can be derived systematically from a very simple static solution 

in de Sitter. 

Part 2 : Monopoles in the Bogomolny-Prasad-Sommerfield limit have been 

constructed, often using instanton like techniques, but separately star- 

ting all over again. It is possible to do better. The well known fact 

that (replacing the Higgs scalar ~ by A t of the Euclidean gauge po- 

tentials) such solutions can be considered as infinite action limits 

of self-dual Yang-Mills field ones can be exploited more deeply and 

fruitfully. Instead of constructing one monopole (or one instanton) one 

can, in a single stroke construct an infinite sequence of instantons 

such that a monopole solution emerges practically trivially in a parti- 

cularly simple scaling limit. Typically one constructs a single solu- 

tion involving a parameter whose admissible values give the entire 

spectrum of indices for members of this sequence (chain). Then the res- 

caling is done through this parameter to obtain a finite energy but 

infinite action selfdual monopole. Thus in a comparable number of steps 

one obtains not only the monopoles but much more. The chains of instan- 

tons thus displayed have remarkable properties well worth studying even 

if one is not directly interesed in monopoles. I start by discussing 

examples of such fascinating special properties for the simplest sequen- 

ce (or 1-chain) leading in the limit to the PS monopole of unit charge. 

Then ' techniques are presented for building a hierarchy of such chains 

giving~multicharged monopoles as limits. For the higher chains our 

constructions present remarkable fully explicit examples of instantons 

in the Atiyah-Ward classes greater than one. The basic idea here is to 

use the hyperbolic line element to construct "static" finite action 

solutions, which becomes possible due to a compactification of the 

"time" direction. 
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1 INTRODUCTION 

In this lecture I shall describe stationary solutions of the Einstein-Maxwell 

equations in the framework of 'dimensional reduction' with particular emphasis on 

the group-theoretical aspects. Although the origin of this approach lies in work on 

Einstein's theory [1-4] it has profitted much from more recent work on supergravity 

[5]. Providing a bridge to a well-developped field of mathematics it not only allows 

for a better understanding of many results on stationary solutions of Einstein's 

theory (explicit construction and uniqueness of 'vacuum' and blackhole solutions) 

but also for an easy extension of these results to a large family of theories related 

to the bosonic part of ten-dimensional supergravity [6]. The simplest extension of 

Einstein's theory contained is the Einstein-Maxwell system which is the bosonic 

part of N = 2 supergravity. Therefore I shall restrict myself here to this theory. 

But before I dive into the deep waters of mathematical formalism I would like to 

motivate my own interest in these solutions. 

Yang-Mills theories and Einstein's gravity theory are presently considered to 

provide the most adequate description of all the elementary forces of nature. In 

this context it is extremely remarkable that both types of theories can be unified 

into a common framework following the ideas of Katuza and Klein [7]. In this 

type of theories the world is some higher dimensional manifold of which only 
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four dimensions - -  the usual space-time manifold - -  are visible to our eyes due to 

some symmetry property of the actual vacuum and its low-energy excitations. The 

factorized classical 'vacuum'-manifold serving as a background for the quantized 

theory is supposed to be distinguished by its stability. Elementary particles living 

on this background are usually considered to be of purely quantum-mechanical 

origin. Howeverif one looks for the corresponding classical description of quantized 

particles one is lead to the concept of point-particles, a concept which has little 

meaning in a theory including General Relativity. In fact the adequate concept 

of a massive particle in General Relativity is that of a black-hole [8]. I personally 

favour the idea thai massive elementary particles are quantized black-holes, i.e. 

have a classical black-hole background, in contrast to massless excitations (photons 

etc.) which are quantum excitations of the classical vacuum. 

Black-holes are the solitons of General Relativity resp. its generalizations. This 

viewpoint is supported by several facts: 

i) black-holes are localized, particle-like objects 

it) black-holes are distinguished by uniqueness properties that give them sta- 

bility 

iii) black-holes are stationary, axially-symmetric solutions and therefore con- 

structable via the Inverse Scattering Method (resp. B~ecklund transforma- 

tions similar to the solitons of the KdV- or Sine-Gordon equation. 

The latter aspect will be shortly discussed in section 4. Section 2 is devoted to the 

mathematical  structure of the equations for stationary solutions, whereas in sect. 

3 I discuss special types of solutions. 

2 FIELD EQUATIONS AND DUALITY TRANSFORMATIONS 

The Einstein-Maxwell equations for the vierbein ev a and the vector potential 

A v are 

Rye, Fv;~F;~,- ~gv~,FrAF ~ (la) 

Fvv ;~' = 0 (lb) 
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* Fttv ;v - leljvtc~ FtC~;v = 0 

Eqs. ( la ,  b), the equations of motion, are derived from the action 

, _ q - / 2 ( R  _ 1  ttv\ ~F.vF ) d4~ 

Eq. (lc) is the Bianchi identity. Eq. ( la)  can also be written in the form 

Rgv = I (F~;~F;~v + *Fgx*F~v) 

which displays the explicit duality invariance 

(lc) 

(2) 

(3) 

with f ] 2  = _ 1. The  equation ~gv ;v = 0 is now completely equivalent to * 7gv ;v = 0 

due to eq. (6) 

A similar type of on-shell duality symmetry  was observed by E. Cremmer  

and B. Julia [5] for N = 8 supergravity; another  case related to ten-dimensional 

supergravity is discussed in [6]. The general s tructure found is the following: there 

are vector fields A~ (i = 1 , . . . ,  n) t ransforming under  a representation of a group 

0 with the 'pseudo-metric '  f] (with f12 = - 1 )  and scalars V parametr izing a 

homogeneous space G/H.  The generalization of eq. (6) is 

(o 1) 
- 1  0 

(6) 

7gv = flV*7gv with (flV) 2 = - 1  (7) 

then 

of eqs. (1). Interpret ing eq. (lb) as the Bianchi-identity we may introduce a vector- 

potential  C/~ for G~v - -*F~v and put 

F~v ) *F~v C 4) 
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To give a few examples: 

N = 2 supergravity 

N = 4 supergravity 

N = 8 supergravity 

gordan-Thiry '  theories 

(Einstein's theory 

in d > 4 dimensions) 

G = V(1) 

0 = 5"0(6) x SU(1, I) 

O =  E7 

G = S L ( d - 4 )  

H =  V(X) 
A = so(6)  x v 0 )  

P = su(s) 

P = SO(d - 4) 

Since we are only interested in stationary solutions we can perform the dimensional 

reduction from four to three dimensions. We assume the existence of a time-like 

Killing vector field ~ such that the Lie-derivative ~Uvgv = O. For the vierbein 

we make the usual decomposition 

( A - l ~ e m a  A1/2Bm~ 
e. a =  A1/2 / (S) 

The isometry-group G 1 related to ~u is supposed to act regularly on the 4- 

dimensional space-time manifold M4 producing the 3-dimensional orbit space 

= M4/G1. From etj a and A v we obtain the following fields living on 

~m a dreibein 

Bin, .Am =- Am - ~oBm vector potentials (9) 

A, ¢p _= A1/2A 0 scalars 

The 3-dimensional action obtained from eq. (2) is 

= ~4~2B 2 

(10) 
1 

T 2a(km,, + ~Bm.) 2 A-l(0m ~o) 2 ] daz 

with Bran = cOrnBn - anBm. The lower sign refers to the case of a space-like 

Killing vector which we include for later convenience. Remarkably it is possible 

to extend the duali ty-symmetry of the 4-dimensional Einstein-Maxwell equations 

corresponding to the group U(1) to the much larger group SU(2, 1) acting on the 

3-dimensional fields of eq. (9). This comes about as follows. The field equations 

for the vectors Arn and Bm 

(AFmn+~Bmn);n=O 
(11) 

(A2Bm. - 2A~o(km. + ~Bm. ) )  ;'~ = 0 
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are considered as 'Bianchi-identities' for scalar fields ¢ and w 

(AFmn q- ~OBmn) = emnlOl¢ 

A 2 Bmn = emnl(Olw -b 2~bc91~o - 2~o0142 ) 
(12) 

The scalars ¢ and w replace the vectors Arn and Bm • This can also be achieved 

by adding the Bianchi-identities for Bran and -~mn with Lagrangian multipliers to 

~__~ ~ _  / e Iron ^ 1 
, /  

'Integrating out' Finn and Bmn one obtains 

(13) 

,~ = 21 f ~[_/~ + 2 ~ - 2  ((OmA) 2 + w 2 )  q= A -1 ((0m~o) 2 + (0m¢)2)] d3z (14) 
E 

with W m -  OmW + 2¢0m~O - 2~O0m¢. 

The line-element 

ds2=  ~_~-2 ((dA)2 q_ (dw -t- 2 ¢ d ~ -  2~d~b) 2) q= A -1 ((d~o) 2 q-(d~b) 2) (15) 

turns out to describe the invariant metric of the Riemannian symmetric space 

$ : SU(2, 1)/SU(1,  1) x U(1) for the upper sign and $ = SU(2, 1)/SU(2) x U(1) 

for the lower sign (corresponding to a space-like Killing vector) in some particular 

coordinates. This is revealed by the following parametrization of $ 

V - exp 0 0 exp i V ~  0 0 

0 0 --A/2 w V ~  0 

0 0) 
= iv~-~b 1 01 

with ¢ = ~o + i¢. 

The action of g E SU(2, 1) on V is 

(10) 

V , h(V,g)Vg -1 (17) 
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where h(V, g) E SU(1, 1) × U(1) resp. SU(2) x V(1) refurnishes the triangular 

gauge of V. The difference between the two sign choices will turn out to be 

of some significance later. SU(2) × U(1) is the maximal compact subgroup of 

SU(2, 1) and hence SU(2, 1)/SU(2) x U(1) is a Riemannian symmetric space, a 

non-compact form of CP2. In contrast SU(2, 1)/SU(1, 1) x U(1) has signature 

(+ + - - ) ,  it is pseudo-Riemannian. The matrix V satisfies 

V + ~ V = ~  with 7 =  1 (18) 

0 

i.e. is unitary with respect to the metric ~ of SU(2, 1). An alternative para- 

metrization [3] of $ is obtained diagonalizing ~ --, AyA + and taking one column 

of the matrix AVA + similar to the usual parametrization of CP2. 

From eq. (16) we find 

½A-10A 0 0 

o v v - '  = ~ v ~ o ~  o o 

A -1 (OW-}-i(¢Odp--+O¢)) V~O¢ --~A-IOA 

½A-'0A T~_~ ~/,-,COw+...) x/2A 
_ i a o  0 +oo J ~-'(o~ +...)) ~ -½~-'o~ 

K (19) 

+ 

o + ~o~ _½,,,-1 (a~ + ..) 

io~ - ia4, 
o +-~T~ 
o~ ~ - 1  (a,, + ...) - ~  o 

.~ is an element of the Lie-algebra of S U(1, 1) x U(1) resp. SU(2) x U(1) 

whereas K" belongs to its orthogon~l complement. 
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.~ plays the role of a gauge-potential and does not contribute to the action 

which can be written 

= 2 f + rrK2) 3  (20) 

describing a generally covariant non-linear a-model [9, 10]. It is also possible to 

use a 'gauge-invariant' parametrization [9] of $ with the help of the isometric 

involution a defining this symmetric space: 

a ( V ) = ~ ( V + ) - I ~  with ~ =  

1 0 0 

0 -4-1 0 

0 0 1 

(21) 

Instead of V we introduce X - a(V-1) V = ~V+~ V and find X --* gxg - I  for 

g C SU(2, 1). in contrast to eq. (17). 

In terms of X the action takes the simple form 

1 f ~[-tl + Tr(x-IOx) 2] d3x (22) 

E 

and the equations of motion are 

[ l m n  = 1 T r ( x - l  amxx-lcgnX ) (23 ) 

(X-lCgmX) ;m = 0 (23b) 

Mathematicians would say that such X'S describe harmonic maps I] ~ $ [11]. 

The hidden symmetry  group SU(2, 1) can be used to produce a whole family 

of stationary solutions of the Einstein-Maxwell equations from any given one. 

The various elements of the Lie-algebra of SU(2, 1) correspond to the following 
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infinitesimal t ransformat ions  of the solution: 

(i°°) o Oo 
are 'gauge' transformations of cs and 

which do not change the solution, 

0 

0 0 

0 0 

is a Ehlers transformation [2] 

changing A ---, t~, 

- 2 i a  is an e.m. dual i ty  t ransformat ion,  

0 

- -  OC 

is a scale t ransformation,  

A, w, ¢ --* e'~ A, e~'w, e'~/2¢ 

0 ic~ 0 

0 0 

0 0 0 

is a Harrison t ransformat ion [12] 

changing A ---, ~. 

3 SOLUTIONS 

We shall now discuss what  is known about  various types  of solutions of eqs. 

(23) describing s ta t ionary  solutions of the Einstein-Maxwell  system. For physical 

reasons we shall only be interested in asymptot ical ly  fiat (Minkowskian) solutions. 

3.1 REGULAR SOLUTIONS 

From (X-tamX) ;m = 0 we find 

/(x-lomx);m~d3x= / (x-lbmx) d~m=O (24) 
E bEoo 

where a ~ . ~  is the surface r = oo. From the field eqs. (23) it follows [13] that  

regular,  asymptot ical ly  fiat solutions have an expansion 

X -- X0 -i- IXI  -{- " -  for r ---, co, where Xo and XI are constants .  Hence we get 

XI = 0. This  means tha t  there is no mass and no charge. The  'Posit ive Mass 
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Theorem'  [14] tells us that therefore X = X0 and the solution is Minkowski space 

with vanishing e.m. field. 

3.2 SPHERICALLY SYMMETRIC SOLUTIONS 

Using polar coordinates the metric on ~ can be parametrized as 

1 

hmn ~- --¢ma cnb ~ab = f2 

f2  sln 2 0 

where f and X depend only on r and eqs. (23) yield 

(25) 

2f"  Rrr --- = 1 T r ( x - 1 x ' ) 2  

f , ,  f [ f , '~2 1 
koo 7 + 1 , 7 ) l  ~ = 0 

( f 2 x - I x I )  I -~ 0 

(26a) 

(2Ob) 

(20c) 

The last eq. gives ( f 2x - I x t ) t  = i ~ .= const E SU(2, 1) which can be integrated to 

r 

f dr (27) X = x o e x p t ( r ) l ~  w i t h  t ( r )  = -f2 

a2 
Eqs. (26) yield f2  = (r - ro) 2 - -4-with a 2 = Tr#  2. Since t(r) --~ 0 for r ~ oo we 

get XO = X ( ° ° )  • 

For vanishing NUT-parameter  this is the electrically and magnetically charged 

Reissner-NordstrCm solution. There is an interesting special case 

a 2 = o  , R m n = O  , t ( r ) = - - 1  (28) 
r 

which is the extremal Reissner-NordstrCm solution. The possibility to have a 

nontrivial p for Tr#  2 = 0 is due to the signature ( + + - - )  of SU(2, 1)/SU(1,  1) × 

U(1). For pure gravity, where $ = SL(2,  R) /SO(2)  with signature ( + + )  no such 

solution exists. The solution eq. (27) can be viewed from a different aspect, it 

defines maps 

t ~ RI X} $ 
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t(r) is a solution of (f2t~)~ = 0 which means it is a harmonic function on ~ relative 

to the metric h. X solves d /X-1)~  = 0, which is the equation for a geodesic of $. 

The fact that the combined map X o t is harmonic is a special case of a 

Theorem [11]: If t is harmonic and X is totally geodesic than XOt is harmonic. 

3.3 STATIC~ SINGLE BLACK-HOLE SOLUTIONS 

We know already from 3.1 that in order to have charge there must be sources 

(= singularities). For static black-holes the following theorem holds. 

Theorem 1: If a static black-hole is uncharged, then AIj vanishes pointwise. 

This is a special case of a theorem for the larger class of theories mentioned in 

the introduction. A proof will be given in [15]. 

There is a well-known uniqueness theorem: 

Theorem 2 (Israel [16]): The only static black-hole of Einstein's theory is the 

Schwarzschild solution. 

Since by a Harrison transformation we can transform away the charge of a 

black-hole, i.e. transform a charged static black-hole into the Schwarzschild solu- 

tion', we conclude conversely that any static, charged black-hole can be obtained 

by a Harrison transformation from the Schwarzschild solution. This yields just 

the Reissner-NordstrCm solution. Hence we have obtained a uniqueness theorem 

for the latter solution without using axial symmetry. 

3.4 STATIONARY~ SINGLE BLACK-HOLES 

From Hawking's rigidity theorem [16] we may deduce that single black-holes 

are axially-symmetric. Our knowledge on such axially-symmetric single black-holes 

is again quite complete due to the following theorems 

Theorem 3 (Robinson [17]): The Kerr solution is the only axially-symmetric, 

single, uncharged black-hole for a given mass and angular-momentum. 

Theorem 4 (Mazur [18]): The Kerr-Newman solution is the only axially- 

symmetric, single black-hole for a given mass, angular-momentum, electric and 

magnetic charge. 

A similar theorem holds again for all the mentioned generalizations of Ein- 
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stein's theory [18, 15]. Without the use of axial symmetry  things are not so clear 

as for static solutions since the proof for the analogue of Theorem 1 given in [16] 

unfortunately contains a serious flaw [15]. 

3.5 CONFORM-STATIONARY SOLUTIONS 

It is highly remarkable that it is possible to superpose certain black-holes 

in a stationary fashion. The simplest example are extremal Reissner-NordstrOm 

solutions with ei= mi mentioned above. They are  characterized b y / ~ n  = 0 (i.e. 

hmn = 5ran) and ~(x) = - E ~ .  There is a more general family of solutions of 

this type - - t h o s e  of Israel-Wilson and Perjgs [19] - -  given in terms of two harmonic 

functions, but the non-static ones have naked singularities [20]. The existence of 

these Bogomolny- type solutions is due to the fact - -  already mentioned above 

w that the signature of SU(2, 1)/SU(1, 1) x U(1) is (+ + - - ) .  This permits to 

find nontrivial X'S with light-like X-1DX . Analogous solutions exist again for more 

general theories [21, 22]. There is an interesting connection of these solutions with 

supersymmetry [23,241. Let us consider N = 2 supergravity whose bosonic part 

is the Einstein-Maxwell theory. A supersymmetric bosonic solution of this theory 

is characterized by the vanishing of all supercharges Qi which is equivalent to the 

existence of a full set of super-covariantly constant spinors (Killing spinors). A 

Witten-type argument shows that this situation leads to Minkowski space as the 

unique solution. On the other hand it is possible to have only half of the Qi's 

vanish, corresponding to a half-full set of Killing spinors. All these solutions are 

characterized by the 

Theorem 5 (Tod [25]): The existence o/one supercovariantIy constant Dirac 

spinor (= half-full set) leads to the Israel-Wilson-Perjds class of solutions. 

4 STATIONARY, AXIALLY-SYMMETRIC SOLUTIONS 

In order to describe stationary, axially-symmetric solutions we perform a fur- 

ther 'dimensional reduction' from 3 to 2 dimensions. This concerns only the 

dreibein ~m a since all the other fields are already scalars in 3 dimensions. One has 

however the choice to use either the time-like or the space-like Killing vector to 

step down from 4 to 3 dimensions. As we have seen already this leads to a slightly 

different structure of the symmetric space of scalars, a pseudo-Riemannian versus a 
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Riemannian space. Lastly it turns out, however, that it is possible to incorporate 

both possibilities into a single representation leading to an infinite dimensional 

group of transformations acting on these solutions. Introducing isothermal coor- 

dinates the dreibein takes the form 

~T$ a ~--- 

h 

h (29) 

where p is a harmonic function on the remaining 2-dimensional space, which we can 

choose as a coordinate as long as amp # 0. There is a conjugate harmonic function 

z leading to a natural  system of cylindrical coordinates (p, z). The equation for the 

'mat ter '  fields represented by the scalars taking values in SU(2,  1) /SU(1,  1) x U(1) 

resp. SV(2, 1) /SU(2)  × U(1) becomes 

( X - l a m X )  ;m = 0 , am(px-XOmX) = 0 (3o) 

independent of h. The equation (23a) can be integrated to yield h as a function 

of X(P, z) once the latter has been determined from eq. (30). The eq. (30) can be 

considered as integrability condition for the existence of a scalar potential w 

p x - l O m x  = emn~nw (31) 

The generalized 'duality'  transformation (remember that a is the automorphism 

discussed above) 

6X = a(w)X - XOJ 

turns out to be a symmetry  of eq. (30) because ( jm ---- pX- IOmx)  

(32) 

aJ'm = -2p*jm + [~, Ym] (33) 

and hence 

since 

amaym = --2amp*ym + [*i",Ym] = o (34) 
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The infinitesimal transformation eq. (32) can in fact be exponentiated with the 

help of some S U ( 2 ,  1)-matrix U(s ,  X) = 1 - sw + o(s)  

xCs) = ,, (uCs, x) - ' )  xCo)uCs,x) (35) 
U has to fulfil the linear system of differential eqs. [26]: 

t 
ainU - 1 + t ~(*j 'n - q , , ) U  (36) 

) where t ( s , p , z )  = -~ - z -  ~/('~-~-8 - z) 2 + p2 . 

Apart from the fact that it is possible to create a 1-parameter family of solu- 

tions from any given one, there is another, even more important aspect of these 

equations. The integrability conditions for the linear system eq. (36) a r e  a m j m  = 0 

and the integrability condition for j m  = p x - l O m x  • Yet, O m j m  = 0 is the equa- 

tion of motion (30). This is reminiscent of the situation for completely integrable 

dynamical systems as e.g. the KdV- or the Sine-Gordon-equation [27]. In fact it 

turns out that the methods developped for the solution of these equations are also 

applicable in the present case. This has lead to a number of very interesting pa- 

pers and to the construction of a large number of new exact solutions of Einstein's 

resp. of the Einstein-Maxwell equations. There are in particular the analogues 

of the multi-soliton solutions, the so-called multi-Kerr-solutions [28]. One might 

hope that among these there are stationary solutions describing charged, rotating 

black-holes in equilibrium, but this hope could not be materialized up to now. 

The most general approach to the integration of eq. (30) is the Riemann- 

Hilbert-Method [29] derived from the Inverse-Scattering-Method so successful for 

the KdV- and Sine-Gordon equation [27]. The essential point is the presence of 

the 'spectraP-parameter t in the linear system eq. (36). As a consequence the 

differential O m U ( s ) U ( s )  -1  belongs to the so-called affine Lie-algebra su (2 ,  1)(t) 

[30]. The latter can be represented by formal a Laurent series in 

+oo 
X ( ~ ) =  ~ tnXn with X n e s u ( 2 , 1 )  (37) 

n~---O0 

In order to exponentiate the Lie-algebra elements in eq. (37) one has to introduce 

some notion of convergence for formal power series. In this case the most appropri- 

ate way is to require analyticity in a domain containing ~ = 0 [31l. The correspond- 

ing transformation group is that of the So-called Riemann-Hilbert-Transformations 
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[32]. A detailed description of this powerful tool will be given in another publi- 

cation [33] initiated with the desire to clarify the connection between the various 

methods developped to construct all stationary axially-symmetric solutions of Ein- 

stein's equations. 

A CKNO WLED GEMENTS 

I profitted much from a collaboration with P. Breitenlohner and G.W. Gibbons. 

Some of the results presented in this lecture are due to this collaboration and will 

appear in separate publications. 
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I. INTRODUCTION 

Non linear sigma models have been introduced in the 60'ties to de- 

scribe low energy phenomena of field theory [I] However, a four dimen 

sional model could not be f~rmulated due to non renormalizability [2]. ~ 

The major discovery which promoted the models to an outstanding 

position in quantum field theory is the similarity between two dimen- 

sional non linear sigma models, and four dimensional non abelian gauge 

theories, both classically as well as quantum mechanically. At the 

classical level we have the actions 
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(1.1) 

or 5s~ = + i ~  v < ~  I I~ > c[23c (1.3) 

presenting, among various similar mathematical properties in the context 

of differential geometry [3], conformal invariance, non trivial topology 

if I~2(G/H) ~ 0 for non linear sigma models, and if ~ 3(G) ~ 0 for 

gauge theories. Quantum mechanically both class of models are asymptot- 

ically free. One expects that gauge theories confine, a property also 

believed to be true for sigma models whose gauge group H is not simple 

(has non trivial ideals), since this is the non factorizable case; this 

was shown for CP N-I [4] and Grassmannian models [5] 

Interaction with fermions can be implemented [5'6] In general, for 

confining pure models, fermions are confined as well [6] Nevertheless, 

if the interaction is defined in a geometrical way, in a sense to be de- 

fined later, the model has exact factorization properties, so that in 

general a factorizable S-matrix can be found [7] In the CP N-I and Grass 

mannian case this means that the gauge field no longer has a pole, and 

the long range confining force disappears, a conclusion that is probably 

true in general. The supersymmetric model is a particular case. It pre- 

sents a strong analogy with supersymmetric gauge theories in four dimen- 

sions. Those models are probably no longer confining, what is true at 

least in the case of N=4 supersymmetric Yang-Mills theory where the 

function vanishes [8] In N=2, the ~ function has no radiative 

corrections [9], the same being true for supersymmetric sigma models [I0] 

Also in four dimensions, sigma models turn out to be important. They 

appear in a natural way in extended supergravity [11], describing the 

spin zero sector of the theory. However, those sigma models are of the 

non compact type [12] Instead of being a disease, this could cure the 

non renormalizability problem [13], quantizing the negative metric field 

in a suitable way. This quantization procedure leads to a break of the 

non compact group into its maximal compact subgroup [14] 
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2. PURE TWO DIMENSIONAL NON LINEAR SIGMA MODELS 

2.1. Classical models and integrabi!ity 

Classical sigma models are defined in terms of fields q(x) mapping 

two dimensional Minkowski (or Euclidean) space time into a manifold M. 

with a free field Lagrangian. The necessary and sufficient condition 

for the sigma models to be integrable is that M is a pseudo-Riemannian 

symmetric space [15] This means that M is a coset space, namely 

M = G/H, where G is a connected Lie group with Lie algebra ~ , and 

H a closed subgroup with Lie subalgebra ~ , such that the decomposi- 

tion ~ = ~ + ~ holds, and the following commutation relations are 

true: 

and [~ , ~ ] C ~ ( 2 . 1 )  

Symmetric spaces have a complete classification, analogous to the Kar- 

tan list [16] 

The field configuration q(x) can be lifted to a field g(x) taking 

values in G, subjected to the natural gauge equivalence 

~z (x) ~ ~i (~) iff ~z[~) = 9. (x) (2.2 

and there is a field h(x) taking values in H, such that 

In terms of g(x) the lagrangian looks like the r.h.s, of (1.3). 

The Lie algebra ~ can be decomposed in simple ideals 

= ~ 0 .... ® (2.4 

s o  t h a t  

The left translated derivative g-1~ g can be split into a gauge 

potential A~ , lying in ~ , and a gauge covariant object K~ , lying 

in ~ : 

= = ( ( 2 . 7  
The gauge potential can be split into components along the ideals 
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A~ = A ~ ,  .... + A~ /2.8/ 
and analogous formula holds for the corresponding field strengths: 

F~ 9r A~ D~Ar * [A~,A~] ~ E ~'' 
= - = ~=o M~ (2.9a) 

We can also define the gauge invariant quantities 

(resp. 

and 

(.'~) 

9p.~ ) 

(2.10a) 

~-~u = % ~ ~v ~4 (2 . lOb)  

The last quantity corresponds to the Noether current of the models. 

This is explicited writing out the action in terms of the g fields, 

eq. (1.3), with the usual definition of the scalar product. 

Due to the symmetric space structure of the manifold M, if we take 

the horizontal and vertical parts of the identity 

- 

we have, respectively 

FF~ =-[K~. , l< .v]  

Also the following identities hold 

and 

As a consequence 

(2.11) 

(2.12a) 

(2.12b) 

(2.13a) 

(2.13b) 

This is the main result. It implies the integrability of the system 

of first order linear differential equations with a real parameter 
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(2.15) 

An infinite number of local [17] and non local [15] conserved charges 

can be obtained. In particular, (2.14) immediately implies conservation 

of the first non local charge 

2.2. Quantization and anomalies 

In order to have information about the dynamics of the model in the 

quantum theory, we shall make use of the first non local charge. For 

this purpose we shall now work in a faithful finite dimensional uni- 

tary representation of G [18] This means that we are excluding non 

compact models from the discussion. We shall discuss those models later 

on as a special case. Thus we can substitute g-1 (which depends non 

linearly on g) by g+. 

In order to define products of field operators at the same point, 

we are led to introduce a normal product prescription, which we denote 

by N[ ~(x)], where (~(x) is a formal product of fields [19] Inside 

normal products we have a constraint on the fields 

where c is a renormalization dependent constant [20]. Other constraints 

defining G as a subgroup of U(N) should be handled similarly. We 

also require that internal symmetry (namely global G transformation) 

and local H-gauge transformations are preserved by the normal product 

prescription. 

Aiming at a correct definition of the first quantum non local charge, 

we examine the Wilson expansion of the commutator between two currents: 

(2.18) 

The correct (finite) definition of the quantum non local charge, 

requires a classification of the operators appearing in the right hand 
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side of (2.18). Because of asymptotic freedom [21], they are classified 

by their naive dimension. The operators are constructed out of the 

field g (dimension zero) and the covariant derivative D~ (dimension 

I). Because of (2.17), the gauge invariant operators ~ are [18]- 

dimension I: ~ 

dimension 2: 3-~ ; ~ %~ - 9~ ~ 

The Wilson expansion now reads: 

c.dO 

3 qF~ 

~ ~,~.~, ~,.,c.~.-~_~ C ~ c~} D~ 

r'-,I 

Since the only operator of dimensionlis the current ~, the finite 

quantum non local charge can be defined by means of a renormalization 

of the second term of the charge: 

Q ¢4 ) 
" S 5 6-.o 6--,0 

(2.20) 

const. ~ 
c 

with Z 6 = ~6 

where the constant is model dependent and is chosen to make Q(1) 

finite. The time derivative of the charge can be readily calculated. 

As a result of general principles (Lorentz covariance, current conserva- 

tion locality and C, P, T conservation) the coefficients C, D can be 

determined[22,23,241r, and D i can be shown to be proportional to 

~v 6~ • As a result 

T h i s  means t h a t  we have  a v e r y  s i m p l e  c r i t e r i o n  f o r  t h e  e x i s t e n c e  o f  

a n o m a l i e s  i n  p u r e  non l i n e a r  s i gma  m o d e l s  n a m e l y  [ 1 8 ] -  

1) ~ i s  s i m p l e .  T h e r e  i s  no a n o m a l y ,  and t h e  c h a r g e  i s  c o n s e r v e d .  

The quantum in and out chargbs are equal. Equality of their matrix 

elements determine the structure of the S-matrix. With a suitable 

ansatz for the bound states, we can define the exact S-matrix. This 

is done for the O(N)/SO(N-I) model [22] (non linear c~model on the N- 

sphere and for the principal chiral model [25] (SU(N) x SU(N)/SU(N)). 

Results are discussed in the next section. 
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D 
2) ~ has non trivial ideals. The non local charge is not con- 

served. Anomaly coefficients can be calculated by a I/N expansion. 

In the known cases the anomaly obeys an Adler-Bardeen type theorem. 

This was done in CP N-I [20,24] and Grassmann [5] models. 

2.3. Some exact S-matrices 

In the cases of models on a sphere S N-I = O(N)/SO(N-I) and princi- 

pal chiral model SU(N) x SU(N)/SU(N), the non local charges are con- 

served and can be explicitly calculated in terms of in and out fields. 
+ 

For the principal model, due to the symmetry g ( ~ g , we have in fact 

2 Noether currents and 2 non local charges, both conserved. As a con- 

sequence of the conservation of the non local charge, the S-matrix is 

of factorizable type, not allowing pair production [26] All S-matrix 

elements can be written as a product of 2 ~ 2 elements. We can use 

the equality of in and out charges to have a system of linear equations, 

since: 

L~ 
(, ~'~ i n-)-',m.-~ ",','~ I "tn' O'J "n' Oz> (2.22a) 

We write the most general ansatz for the S-matrix and obtain the 

factorization equations. For the model S N-I we have 

+ e2~O ) ~ k  ~ + ~(O) ~k~ ~a } (e4,_.,o , )  + (2.23) 

and as a result of the linear system implied by the charge conservation 

6q{--. - Z,(,"~ 6-z ( 2 . 2 4 b )  
(.N-Z)(,:~-e) 

~3 = -Zi~ ~2 (2.24a) 
CN-z)G 

where ~ = G4-Sz 
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Using general properties of the S-matrix, and absence of bound states, 

we o b t a i n  [ 2 6 ]  

' - °  1 = ~ L  N-2 Zf/i 2-~ ( 2 . 2 5 )  

r (~ , )  r ( + - - '  -,--~-~ ) l" ( + - - °  _ _~..) 
w h i c h  c a n  be  v e r i f i e d  up t o  2 ' n d  o r d e r  i n  a 1/N e x p a n s i o n  [ 2 7 ] .  

F o r  t h e  p r i n c i p a l  m o d e l  we h a v e  t h e  more  c o m p l i c a t e d  SU(N) x SU(N) 

i n v a r i a n t  a n s a t z  : 

Gc~ , , G q G  O,G%,o,q~, : ~ ( o ~ - o ; ) ~ ( G - e l )  + 

+- [ u 3 (e)  ~ ¢' cl 6 c~ c,; + ~%(e) c~C'C'~cJc'G]c~"";~ ~°c~ } 

(2.26) 

+ ~o) + ~ (e) 6~,c, ~c;c~ ~,,~ ~,',~; 

L[ 

. t . [ ~ ( O )  (~c. cI c~c~c; cz c?c~ I 

(2.27) 

where ~ = O7 _ Oz 

-I 
From the non local charge conservation, and the symmetry g ~ , g 

(implying the existence of a second non local charge) we obtain: 
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u . , ( e )  = - ( 2 , ' U N O )  ~ ,  ~e) , ~ , , ( e )  = - ( 2 ~ " , J o ) - u , ( o )  

P~ ((9) -_ ~ (@) = 0 

=~(o )  = u~ co) , t (o) = t 3 (0)  , r~loj = %~o) = o  
(2.28) 

Using an argument similar to those followed to obtain Z [28] and chiral 
n 

Gross-Neveu [29] S-matrices, we use the unity determinant condition 

<Ut~ = 6 ' ~ ' 4 '  % , ,  ..... ~ , , ,  "-<' 4_ (2.29) 

interpreting it as the fact that an antiparticle is the bound state of 

N-1 p a r t i c l e s .  This  i m p l i e s ,  by the  f u s i o n  method [30] ,  the  bound s t a t e  
spectrum 

and 

3~m = ~ %i~ ~/N (2.30) 

° 
= ,,, 

, I..I, Z ~ ¢ )  [ r (2.31> • N N -~lt,~ / 

Note that for N=2 this is in accordance with the 0(4) result above. 

Also the result can be verified using the Bethe ansatz [31]'" 

3. INTERACTION WITH FERMIONS 

3.1. Classical model 

The fermionic sector of the non linear sigma models can be specified 

by choosing a definite representation of the gauge group H Accord- 

ing to each case we can derive explicit expressions for the composite 
M 

fields B~ and ~ , defined by 

( ~ ,  ~ )  -- ~ '~  ~ X ~1 x" , ~ ~ ~ ( 3 . 1 a )  
2 

M 
= (3 .1b)  
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For the Grassmannian models, as a very general example (notation as 

in (5)) 

= z Z ~ + 
(3.2) 

The Lagrangian is defined as a sum of the pure non linear sigma model 

Lagrangian, the (gauge-covariantized) free fermion Lagrangian and a fer- 

mion self interaction - I/4(B~ ,B ~ ). 

The representation of H we choose, determines further physical 

properties of the model. We have two main interesting cases, namely 

the fundamental and the adjoint representations. 

If the fermion ~/ transforms according to the fundamental represent- 

ation of H 
~.__, ~-~ ~, 

with covariant derivatives 

.D r .~f = 9 r.V + AF 

the Lagrangian reads 

(3.3) 

The Noether current is given by 

~'u(BF, ~,u) (3.4) 

where ~ : ~. 3:~",~.. ,~ 

satisfying the condition 

implying compatibility of the system [32] 

(3.5) 

[~,, 3~ 1 = o (3.6~ 

and conservation of the charge 

(3.7) 

(3.8) 
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In this case we can define a new gauge field, in the Grassmann 

model [5] CP N-I as a particular case [33]) 

d e r i v a t i v e s  D~ accord ing ly .  and covarlant 

extremely simple form 

The adjoint representation is not less interesting. 

we can redefine the fermion field 

(3.9a) 

(3.9b) 

The Lagrangian takes the 

(3.10) 

In that case 

( 3 . 1 1 )  

w h i c h  t r a n s f o r m s  j u s t  l i k e  t h e  g f i e l d  i t s e l f  u n d e r  g a u g e  a s  w e l l  a s  

g l o b a l  s y m m e t r y  t r a n s f o r m a t i o n .  W r i t i n g  e x p l i c i t l y  t h e  L a g r a n g i a n  

density in the case of U(N) symmetry we obtain 

(3.12) 

with Z~ = O = ~+~ 

which is the Lagrangian and constraints of the supersymmetric model! 

Supersymmetry happens to appear naturally just choosing a representation 

for the fermions under the gauge group. 

Again integrability follows, and the non local charge is conserved, 

where in case of U(N) symmetry 

~ = ~ ~ ~ (3.13a) 

(3.13b) 

and (3.8) for Q. 

3.2. Quantization and cancellation of anomalies 

The most striking feature of non linear sigma models interacting with 

fermions in a minimal or supersymmetric way is the exact cancellation of 
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the anomaly (2.21) with the Adler anomaly of axial current divergence 
[33,24] 

In order to prove this statement we proceed along the following. 

We first write the Wilson expansion to be used in the definition of the 

quantum non local charge in the minimal (M) and supersymmetric (S) cases: 

(s) 

~) O'F 

(3.15) 

In the pure case it is simply Note that presence of the finite part. 

equal to zz( ~J~ - ~ J~), which can either be included in the coeffi- 

cient D~aor be put zero by defining [20] ~z=0. In the case with fermi- 

ons this is no longer true, since eq. (3.6) contains the divergence of 

the axial current, and must be replaced by 

and there is an exact Cancellation in the Wilson expansion, so that 

the quantum non local charges 

(3.17) 

(3.18) 

(s) 

are conserved. 
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3.3. Exact S-matrices 

Using the fact that non local charges are conserved, we can proceed 

along the steps followed in non anomalous pure non linear o models and 

calculate the S-matrix of each model. 

For the CP N-I models with minimal fermions we can construct the S- 
[17] 

matrix for the bosonic sector. The asymptotic charge is 

• + 

(3.19) 

dp 
b + 

+ 
with d~(p) = and b, - ~  , , a, a are the creation 

and annihilation operators of the z field. Conservation leads to the 

factorizable S-matrix 

k o;, o, 

I , 

with 

{4 tel = 

~o1, ~ez ~=~(8.e~)~(~z.(9~z)[l11~o) ~k~£ +l~zis)~££~k} (3.20) 

4 e 

(3.22) 

a result that can be checked by the I/N expansion [34]. Physically, 

the charges are set free due to the screening of the fermion conden- 

sate. Note that the above S-matrix does not have bound states. For 
I 

N=2 this is in contrast to the pure CP model, which is exactly sol- 

uble [35]'" and whose bound states have the S-matrix of the 0(3) non 

linear ~model. 

The supersymmetric model is more interesting. The asymptotic charge 

is 
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(O~T  ~ l 

tl~,) d l~t~)  [ (I,,-1~,) : ?,) t,e,) - 

+ 4_._i[ i d'l*" tl~) 9~ P°-rP~ [ I~"+t?)Io~(,p) - o.~+(~)a, t~) -I- 

+ d~(? )  &~Lt ~) - c~+(,p) c <9) 

(3.23) 

and a factorizable S-matrix for both fermions and bosons can be computed: 

= ~{o,-o:)~fCo,-o,)  ,, vp~ (o )  

+ ~(o,-e;)  ~(~.- e;) ,,~,v~ F, (o) 

(3.24) 

_~ (o,- e~) 6(e, -e; )  ,, L)~ (0) 
(3.25) 

with V, U, C, and D glven by 

(3.26) 

(3.27) 

(analogously for U, u I, u2, C, c I, c 2, D, dl, d 2) and the backward 

particle-antiparticle scattering amplitudes vanish. 

Other particle-antiparticle amplitudes are obtained from crossing. 
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Moreover 

[... 

~i,~ < e i z z )  
(3.28 

(3.29 

o[. s (0 )  - 5 i ~  < / ~  C~ ~0)  
(3.30 

The mass spectrum is 

~'~w ~/N ( 3.32 

This can also be verified in a ]/n expansion [36] It has the inter- 

esting property that the antiboson is a bound state of n-] fermions and 

the antifermion is a bound state of n-2 bosons and I fermion. In fact 

the S-matrix was constructed to obey this fact, in a way analogous to 

the solution of the chiral Gross-Neveu model [29] This is related to the 

screening of the chirality for physical fermions, which are massive and 

unconfined, the confining force being screened by chirality [29] 

We should point out that the above construction does not work for 

Grassmann models, because the non local charge does not provide enough 

information. Only information about color singlets is given [5] 

The S-matrix for the supersymmetric O(N) ~ mode] is also known, but 

will not be presented here [37] 

4. WESS-ZUMINO INTERACTION AND NON ABELIAN BOSONIZATION 

Among the non linear sigma models, the principal model seems to be 

one of big importance and interest. It presents a chiral symmetry 
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SU(N) x SU(N), and has a highly non trivial I/N expansion, the lowest 

order being represented by the sum of planar graphs, just like four 

dimensional non abelian gauge theories [38] In spite of this fact, the 

exact S-matrix is very simple [25'31], being expandable in an asymptotic 

series of I/N. In four dimensions the Ohiral model summed with a Wess- 

Zumino term 39] is a phenomenological low energy action for baryons [40] 

In two dimensions the ~ function of the model is vanishing, if 

we fix the coefficient of the chiral term in a suitable way [41] and the 

Kac-Moody algebra obeyed by the current is the same as that of a curren 

of a free fermion multiplet. 

The model is defined by the action 

(4.1a) 

246 

B is a ball with two dimensional (compactified) space as boundary. < 

is the Wess-Zumino term. The scale invariant case corresponds to 

~2 : 4 Z/n. 

For general values of ~ , the exact S-matrix of the model has been 

computed using the Bethe ansatz [42] 

For the scale invariant model, we can have further information by a 

new kind of bosonization procedure, in which the equivalence of the 

model to a free fermion theory is proved [43]. In an operator language 

this is done by the following steps. 

We define a free fermion theory 

with '~ , belonging to the fundamental representation of SU(N). We can 

define the currents 
F 

We define also the composite operator 

(4.4 

We analyze the operator product expansion of 

J.q. (~;e] - ( ~ik 
aft 

and 

( 4 . 5  

8 -I 

2~ 

(4.6 
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usual L44~)r] the currents mJ~i4(x) as being the most We define (as 
~ J 

divergent term of the operator product expansion of J~..(x; £ ) dis- 
_i 3 

regarding a trivial c-number: 

6~0 

(4.7) 

We verify that 

8 F 
J±~ t~) = J±~ ~) (4.8) 

As a consequence, the Hamiltonian is also the same for both [45] 

(fermionic and bosonic) cases. The bosonic equations of motion corre- 

spond to those of the scale invariant model, and all Green functions 

can be explicitly computed. This bosonization prescription can also 

be carried out by other methods [46]'~ 

5. CONCLUSION AND OUTLOOK 

Besides the striking similarity to non Abelian theories, one of the 

most attractive features of non linear ~models is their integrability. 

Most striking is the integrability of supersymmetric models (or gener- 

ally for models with fermions), since this is the case where finiteness, 

or at least a better ultraviolet behavior is expected for general field 

theories. Previous results show how this is obtained. A procedure to 

extend them to the Green functions can presently not be envisaged. 

None the less other questions, not less interesting, can be raised. 

Non compact models deserved up to now not very much attention, due to 

the difficulty of quantizing fields with a non positive definite Euclid- 

ean action. It has been proposed that in general these models can dis- 

play 2 phases: either the non compact symmetry is maintained in the 

quantization procedure, or it is broken in its maximal compact subgroup. 

Breaking a symmetry in two dimensions raises the serious question of 

treating massless bosons, so that it is very likely that at least in two 

dimensions the non compact symmetry remains unbroken, and the S-matrix 

should contain passive bystanders in order to maintain positive defi- 

niteness [47] In higher dimensions the broken phase quantization pro- 

cedure is very desirable due to cancellation of ultraviolet divergences 

in those cases. 

Also the status of anomalous models should be better understood. 

It seems that confinement is behind the breaking of factorizability, 
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although this has never been proved. This happens since those models 

presenting anomalies have a confining massless gauge field, and coupling 

fermions, the confinement disappears as long as the pole of the gauge 

field is driven away from zero due to the fermionic contribution to the 

gauge field propagator. In other words there is a cancellation between 

the gauge field pole (generated by the bosons), and the chirality carry- 

ing part of the fermions. Physical fermions are massive, and do not 

carry chirality. 

Besides being a simplified theater of the extremely complicated non 

Abelian gauge field scenario, the models give explicit examples of non 

trivial S-matrices in quantum field theory, comparison with perturbative 

expansions, and explicit models where supersymmetry can be realized at 

all levels, namely Lagrangian (classical and quantum), physical states 

and S-matrices. Those simple facts are far from trivial in four dimen- 

sional quantum field theory, since non trivial models can have trivial 

scattering, perturbation expansion is not convergent, I/N expansion had 

never been completely developed, and there are suspicions that super- 

symmetry cannot be realized quantum mechanically in a gauge theory. 

Moreover, in integrable models other developments can been foreseen, 

towards the complete solution of the problem, by means of the study of 

the monodromy matrix [48]. 

We think that a complete understanding of these models is a very big 

progress in the development of ideas in quantum field theory. 
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In this talk I would like to convey the idea that it may by worth- 

while to formulate and attack the problem of the quantization of the 

free relativistic bosonic string by algebraic means. 

In general, strings and their quantum theory are of interest because 

the elementary excitations of QCD - if this is the theory of the 

hadrons - are string-like; quarks and/or antiquarks joined by strings 

of chromoelectric flux and possibly glue-balls as closed strings of 

chromoelectric flux. 

I shall not even attempt to derive anything for these QCD-strings. 

Instead, I shall address myself to the Nambu-Goto-String [I] well 

known from the high-days of the dual resonance model - which - as 

Nambu suggested some four years ago ~2] - should give us valuable 

information about the SU(N) Yang-Mills-Theory for N--" ~ • This Nambu- 

Goto-String theory, the generalization from random walks to random 

surface trajectories in Minkowski-space, has so far resisted all at- 

tempts to establish it as a quantum theory*. The unacceptable 

features of the quantization schemes were among others 

i) lack of Lorentz invariance, 

ii) tachyonic states, 

iii) loss of reparametrization invariance. 

The methods employed were 

a) canonical quantization in some special (orthonormal) coordinate 

system [4] , 

b) functional integration in the so-called transverse gauge ~5] , 

c) functional integration using an extended invariant measure ~] 

Unfortunately, it is not yet clear whether method c) , i.e. Polyakov's 

see, however, the remarkable WKB-treatment of the theory by 
L~scher, Symanzik and Weisz [3] 
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treatment [6,7] cures the diseases listed above. 

Whatever the situation may be, I am pursueing together with my colla- 

borators C.Kimstedt and K.-H.Rehren in Freiburg the idea to treat 

the string theory in complete analogy to the quantum theory of the 

free massive relativistic particle as a representation problem for 

some (Lie)algebra of symmetry operations. For the free massive sca- 

lar particle the Klein-Gordon equation is interpreted as a represen- 

tation condition for the Lorentz group. One approaches the problem 

by determining the Poisson-algebra of the conserved observable quan- 

tities ~M~w of the system whose dynamics is given by the repara- 

metrization invariant action based upon the Lagrangian 

One r e p l a c e s  t h e  P o i s s o n - b r a c k e t s  b y  t h e  c o m m u t a t o r  b r a c k e t s  a n d  r e -  

p r e s e n t s  t h i s  ( P o i n c a r ~ )  a l g e b r a  i r r e d u c i b l y  a n d  u n i t a r i l y  s u c h  t h a t  

t h e  e n e r g y  , i s  p o s i t i v e .  To t h i s  e n d  o n e  d e t e r m i n e s  t h e  C a s i m i r  o p e -  

r a t o r s  and t o g e t h e r  w i t h  t h e i r  s p e c -  

trum and assigns to these operators one of the possible values, 

here: ? =~m~ > ---~S~B~4~0. Next one determines a Cartan- 

subalgebra, e.g. ~ and &3 (= 3 component of the spin in the rest- 

frame) and constructs, starting from the eigenstates corresponding to 

and ~5 , by applying appropriate boosts the irreducible, unitary 

representation with positive energy of the Poincar~ algebra and 

-group respectively. 

This way of quantizing the free massive scalar particle is much more 

direct and gives - at least to me - much more insight than the calcu- 

lation of the Green's function ~(~), X(~ by functional integrati- 

on. Here ~[~t%) M(~)) is the amplitude, which gives the probability 

that a particle in a volume element ~K ~) near ~) at time K °~;° 

will be located in a volume element ~3 ~) near ~(~) at time K ~)~. 

I want to apply the algebraic procedure just outlined to the quanti- 

ration of the free relativistic closed string. For that I have to set 

up a correspondance (analogy) 

the physical states I~> 

9 , 0  I : o 

and the Klein-Gordon equation 

operators 
l 

of the so-called loop equations for 

~Z-~)~.~>--0 or rather for the loop 

, = - 
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and the operator 

The two loop-operators are not on the same footing. The first one 

guarantees that one is dealing with ~eometrica ! objects independent 

of any parametrization, namely: curves in space - time together with 

certain tangential planes to these curves. 

This equation has no correspondence for point particles. Hence it is 

the second loop operator which has to correspond to ~ ~-~wL~. 

Then, what is the (Lie-)algebra for which ~,~)j~=0 acts a represen 

tation condition? This algebra necessarily must be infinite-dimensio- 

nal because infinitely many independent compatible conditions are im- 

posed on its representation. 

For the string theory two infinite dimensional Lie algebras have al- 

ready been analyzed: 

I) the Virasoro aljebra of the infinitesimal generators of the con- 

formal reparametrizations of the trajectory surfaces [8] , 

2) the Kac-Moody-Lie al~ebra generated with the help of the vertex- 

operator of the Koba-Nielsen formalism [9] . 

However, since the elements of these algebras do not commute with 

~[. ~) and L~ ~ , the algebras are not admissable. Thus we have 

to look for some new algebra ~ on which the loop operators ~'~) 

and ~[',~) act trivially such that they consist of Casimir operators 

of this algebra. 

Before I turn to the construction of the desired algebra let me speci- 

fy the theory by its classical action and let me introduce some no- 

tation. 

The Nambu-Goto-action of the bosonic, free, relativistic string is 

given by 

Here " ' '" 4%, --(:l~[,~ ~.,- and (~ . , , - /=  ~'d--k~Xp)= k,~.';, X' ~ . , t l  "~1 - - \  ~ and ~ are 

parameters of the trajectory surface ~= ~[~i~) in Minkowski space, 

is a "space-like" parameter : 

I 
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is a time-like parameter: 

k '~ >, 0 ( i~ ~ x ~ , ~  

F o r  e v e r y  v a l u e  o f  ~&~ t h e r e  e x i s t s  a m i n i m a l  p e r i o d  

This condition reflects the fact, that the string ~(. ] 

o ~  ~ _< cac~') - - - -~ x/ .  --- x ~ c = , ~ - ]  

is closed. 

The above action is invariant under arbitrary reparametrizations ~q 

-~6~:~ ~ = Cu~ , [~,~] . Moreover, it is invariant under 

the group of motions of the Minkowski space. The conserved quanti- 

ties corresponding to this invariance are 

The description of the state of motion of the string by the data 

~[~5-] , X~,m]'__"~ m fixed , ~6 [0,0~£~)] is highly redundant. 

This redundance is reflected in the canonical formalism in the non- 

invertibility of the defining equation for the momentum conjugate 

to X~: 

~'~ _ ~ c ~ , ) ¢ - ~ x  '~ 

There exist two "first class" constraints in Dirac's classification 

L + O. 
I0 [o,~] has the interpretation of a momentum "density" 

otG- ~ 
i.e. ~-~5-) is interpreted as the momentum attached to the curve 

element ~%~ . 

In the sequel, we shall set ~L = ~ 

Under reparametrizations 6~--~ : ~--.1~ ~)~and~vtransform 

as follows 
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We impose the reparametrization invariant Poisson-brackets 

These can be reformulated with the help of the quantities 
+ 

which transform covariantly under reparametrizations 

t ' ' 
0 otherwise. 

The "canonical" Hamiltonian~=~X-~ vanishes identically. According 

to Dirac the evolution of the system in the parameter ~ is given 

by the so-called total Hamiltonian formed of all first--class con- 

straints. 

o 

where ~ and ~ are quite arbitrary coefficient functions which can 

depend on anything like 41 ~L ~£-~] i ~0,~) and even on more gene- 

ral (non-dynamical) variables like X ~£°i~). It is however important 

that ~ and ~ are periodic functions of ~ with period ~(-). 

The equations of motion are 

We shall write them in the nearly equivalent form 

--L<< >% 

The solutions of these classical equations of motion describe mini- 

mal surfaces in Minkowski space. These surfaces have singular points 

in general. 

~ has no physical meaning. It should by no means be confused with 
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the infinitesimal generator of translations in physical time: 

the energy. 

I) 

2) 

The effect of the first term under the integral in the expres- 

sion for ~q, 

.~ oL~ ~.~.,~-~ R (.., ~-) 

on a dynamical variable X parametrized with the help of some 

parameter 6 ~ just consists of a reparametrization of the quanti- 

ty X . The condition {~[-,~-~, X ~ = 0 for the desired al- 

gebra guarantees that its elements are geometrical and observable 

objects. 

Only the second part of ~ 

O 

describes a change of the geometry as the parameter ~ evolves. 

Vanishing commutators of our desired algebra ~ with this part 

of ~q~ mean that ~ consists only of conserved (observable) 

quantities. 

The condition 5--'----[.,~)I~) =0 can be viewed as a local version of 

the representation condition 

where 

To see that, we pass from the above reparametrization-variant to the 

-invariant form 

where for the time being we have reintroduced the mass ~. Equivalently 

_ 11  

~[" ~-~=~/~',~----invariant quantity ? 

~s - - ,~-d: ' ;  ~ ~ ' - -  " " 

Expanding "--(~C~/~(''~-) around its average value ~ gives the 
&s , ~ . U  
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constant part ( h =~£')= Minkowski length of ~£. )) 

and in addition a denumerable infinite collection of other represen- 

tation conditions for the algebra of observable conserved quantities. 

Certainly, among the elements of ~ there are 

a n d  

f t 
The additional elements should rather refer to the "internal" state 

of the string, i.e. should be invariant under translations in space- 

time, i.e. should commute with ~ , but not necessarily with ~ .  

Now we turn to the explicit construction of the desired algebra. The 

algebra is obtained with the help of a reparametrization invariant 

generating functional 

+ + 

where ~J(~ are two special pseudo-unitary ~ x ~ matrices which de- 

pend on r~ and on a set of real parameters A ~ 2~--4, ..... , ~, 
~+4 ; ~= ~,Zi~, --. : for a given/~" A2~0 only for 

finitely many values of of. . Moreover - and that is absolutely essen- 

tial - ~ )  depend only on the d[namical variable__ss ~(.,~-) and 

~-~ [.~') respectively: 14.~. 4 m ~ ~ . 

The reparametrization invariant defining equations for ~ are 

where the r~ are the infinitesimal generators of ~%K(~) , e.g. 

~4 i~i'~a the infinitesimal generators of ~IZ~)9 

~%--- ir~8 the infinitesimal generators of -~£3~ 

~A)--.I~4~ the infinitesimal generators of ~)L(~) ° 

The equation for the ~-evolution of ]~)[" ,~ is 
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which is compatible with the previous defining equation due to the 

equations of motion. 

Consider the monodromy matrix 

which does not depend on the parametrization of the curve X/-~-~K/~C~%-)__ 

Its eigenvalues are independent of ~ and ~o6~] . Consequently all 

quantities 

are reparametrization invariant conserved quantities. It is correct, 

that all the information is already contained in 

~ o w e v e r ,  t h e  h i g h e r  powers  % - C [ - ~ f ~ - ~ - ] ~  - c o r r e s p o n d i n g  t o  t h e  

periods ]~[~) , ~-~-~%, . . . .  - or rather the higher powers 

shall become important later. 

The expansion of these traces in powers of the parameters ~/~ yield 

"non-local" charges. (It is not clear whether in addition there is 

a "decent" set of infinitely many "local" observable conserved 

charges. ) 

With the help of the following matrices [I0] 

(°°. 1 ~ _ °  ? 
K-~%. ~ ~ . ~ r ( . < , - - - , < ~ . T  , q' -- ~o- - - - - , io  

it is possible to recover from the knowledge of 

as a function of the parameters A/~ all the cyclic sums C~ ._ ~] 
7 ~ 

of 
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oo~.~,') ~ ~_~ 

and vice versa: ~LI~,--,k"-') Z ~- 

The ' ~ . , . . . / ~  satisfy certain identities: ~ =  "w~"~"L" ~ "~.~,.j.c{s" 

N°tati°nL__ 
Iw~ • - * * I  

where the sum extends over all permutations of [ ~'1"-4,"" t~'-C'vs]]:-~.i~) "', 
~ - . b { { . , " , S ~  which leave  ~he orde~ of  the two d i s j o i n t  sets t < , ' ' , ~ * ] ;  
%i,, ~ , { d  separately invariant. 
It is advantageous to pass to quantities with the same amount of in- 

formation , ..j~ which differ from ~/~A~. /~ y some products of 

~$ with smaller rank which satisfy instead 

+_t 
I,,u,%;..-,~u;_~ = 0 for all partitions of ~L 4, "" ",,',-u"~ 

These ~-{b are just produced by ~ [~(A~--* ~- 

One consequence of these symmetries is 

~+-~..,.~__ = 0 9 unless  ~=4 for w h i c h c a s e ~ = ~ : ~ .  

Thus, the non-local charges we want to consider are produced by 

~-[m ~(A~] and are given by 

To give just two examples 
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Alasgnot all of those ~. ~$~are of this type, some containing pro- 

ducts or even consisting of products of "smaller"~tS . The linear 

span of all those quantities £/~..)~) forms an algebra with an 

associative symmetric product, corresponding to the usual tensor pro- 

duct 

-," ;,',.. . s . / .  

where the sum extends over all possible inequivalent (with respect to 

common cyclic permutations) distributions of the indices/~A1-.-)~-; 

~--. ~%;$ preserving the separate cyclic order of/~ --.|~and 

~4~--"~ respectively. Of course, the "tensor" product of a cyclic 

tensor ~¢~.)_..i~ )-.7. and a second cyclic tensor "~--'6~i~)..~/~7 -~ in gene- 

ral does not lead to a cyclic tensor 4,--,~" For that it is 

necessary that the product is followed by cyclic symmetrization. 

The linear span of the ~31S 

operation 

closes also under the Poisson-bracket 

& • * _he \ 

V -~ ~-~ F ~ ~-d "7 

+ -- for 

This antisymmetric Lie product satisfies the Jacobi identity. It has 

all the properties of a derivation. 

The Poisson-bracket for the quantities ~,,-__ ",/~I can be given by 

a similar formula. 

Now the idea is the following: do not attempt to rePresent in the 

quantum theory the original reparametrization variant Poisson- 

brackets by commutator brackets, but try less and represent only 

the Poisson-algebra of the above invariant quantities by a commuta- 

tor algebra, the product being defined by the non-commutative, but 

associative operator version of the above "tensor-product". 

Now in general this does not work unless the right hand side of the 

Poisson-brackets of some complete set of generating elements of the 

algebra does not give rise to ordering problems. 

It is hardly surprising that indeed there will be ordering problems 

for the $ as well as for the $. 
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However, my collaborators and myself have checked for already fairly 

complicated situations that these are absent for certain filtered 
±~14c 

elements. For that one has to pass from the ~£~ , .  -~  S to trun- 
• ~',~ F A~- - ,r~.; 

~-~K which differ from the ~- ~S only by linear cated =~Q~ _ .,)~%+_ 

~-~ "v )s combinations of products of lower rank and, moreover have 

the property that all linear combinations which previously yielded 

products of ~-' )S vanish. Unfortunately, no simple generating 

functional (like the logarithm) for the ~ ^  ..~J~ has been found 

yet. 

The ~.~%dezine__ representation spaces for the Lorentz-group. The 

central projectors of the symmetric group commute, in particular, 

wit h the cyclic permutations. Hence the ~'Q~,--,,~O% can be de- 
irred. 

composed according to equivalent representations of SU[I~4) and 
finally of the Lorentz-group ~0[i~. 

The Poisson bracket operation obeys simple rules for the indices ~L , 

and also for the symmetry content of £~, ..,~ i.e. there are 

selection rules. Under Poisson-bracket operation: 

The possible representations of ~U [~4 ) occuring on the r.h.s. 

follow from the Richardson-Littlewood rule. The inequality sign re- 

quires explanation: apart from the metric tensor ~{ the rank 

of the r.h.s, of the Poisson-bracket is of course ~.qn~-~. However, 

allow that factors~ .... / ~'~'- be factored out of the elements we 

on the r.h.s. , in other words, that the structure constants depend 

on the total momentum of the string. This is admissable since the 
~-/_~ 

~$ com~ute with all oral As far the algebra as !nternal goes, i 

the ~/S can be regarded as numbers just as the Hamiltonian ~ an- 

term the structure constants of the 0[~ group of the hydrogen atom. 

In fact, any such central element is acceptable in the structure 

constants on the r.h.s, of the Poisson-brackets. 

Thus the total algebra ~ is supposed to be generated from 

where ~+ is the linear span of the elements ~,;-,~% and 

~ %~ - ~respectively. 
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The desired structure of the Poisson-brackets has been explicitely 

checked for all [/~A,--~,~£ , ~(I,--,~)£ and moreover, for all 

~, ~+~L(40. Heuristic arguments indicate that this structure 

holds true at least for an important infinite dimensional subalgebra 

Of "dominant" charges. 

Let me finish by expressing my conviction that here we have stumbled 

upon a remarkable structure of the classical string theory which 

should be taken into account when one passes to the quantum theory. 

The quantum theory should rather be defined as the implementation of 

a maximum of this structure in a commutator algebra, subject to the 

requirement that the energy be positive definite and the represen- 

tation be "unitary". 
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I. Introduction 

Integrable classical or quantum field theories possess by defi- 

nition an infinite number of conserved charges commuting with each 

other. During the last decade, a considerable list of such models in 

two space-time dimensions has been established. The main tool for the 

construction and solution of them is the classical or quantum inverse 

scattering method, the algebraic backbone of which has turned out to 

be the Yang-Baxter equation. It was introduced to solve the one-dimen- 

sional gas of particles with Dirac delta interactions I) and the eight- 

vertex model 2) in statistical mechanics, in particular, to prove the 

commutativity of transfer matrices t(1) at different values of the 

spectral parameter I. The transfer matrix provides a link between ver- 

tex models and quantum mechanical spin chains: The XYZ Hamiltonian, 
2) 

for example, is a logarithmic derivative of the eight-vertex t(1) 

It is a representative of a large class of theories to which the quan- 

tum inverse scattering method can be applied 3) . One associates to such 

a model a local transition matrix Ln(l ) and the monodromy operator 

T(1) =7~n Ln(1), the trace of which is the transfer matrix t(1). Com- 

mutation relations for the various operator entries of T(1) are obtai- 

ned from the Yang-Baxter algebra 

(1.1) 

where the model dependent numerical matrix R(I,~) satisfies the con- 

sistency condition (Yang-Baxter equation) 

(1.2) 

In particular, log t(1) is the generating functional of infinitely 

many commuting local conserved charges including the Hamiltonian. More- 

over, the off-diagonal elements of T(1) provide creation and annihila- 

tion operators for the Bethe eigenstates of t(1). 

These integrable quantum models have classical counterparts which 

are solvable by the classical inverse scattering method. They possess 

~n associated system of linear differential equations (Lax pair) and 

its monodromy matrix T(1) which is the classical analogue of the quan- 

tum monodromy operator. Poisson brackets of the various matrix ele- 
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ments of T(I) on a finite spatial interval are obtained from the clas- 

sical Yang-Baxter a lgebra  3) 

(1.3) 

where the model dependent numerical matrix r(l,~) satisfies the clas- 

sical Yang-Baxter equation 

(1.4)  

Usually, R(X,~) and r(~,~) are related through 

P=permutation matrix (2.24). In the infinite volume limit (with suit- 

able normalizations of T(1) and r(l,~)) the trace of T(1) provides 

infinitely many commuting local conserved charges (action variables) 

including the Hamiltonian, whereas the off-diagonal elements furnish 

angle variables. 

In contrast to this situation involving abelian charge algebras, 

these lecture notes deal with another class of models where the whole 

monodromy matrix (and not only its trace) is time independent and ge- 

nerates conserved charges satisfying non-abelian Poisson bracket and 

commutator algebras. This class contains two-dimensional field theo- 

ries with non-abelian internal symmetry which classically are scale 

invariant. The currents associated to the internal symmetry group obey 

a flatness condition which allows the introduction of a Lax pair and 

the corresponding monodromy matrix. Examples are the non-linear ~ models 

on symmetric spaces 4) and fermionic theories like the chiral SU(N) 

and the O(2N) Gross-Neveu models 5) . For these fermionic systems and 

their generalizations, the Poisson bracket algebra of the monodromy 

matrices has turned out to be a classical Yang-Baxter algebra 6) . Due 

to conformal invariance, it is of "finite interval type", although we 

consider the system on the entire real axis. Thus the classical r mat- 

rix provides the structure constants of the canonical algebra of non- 

local charges. In particular, taking the trace of T(1), one obtains 

an infinite dimensional abelian subalgebra: 
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On the quantum level these theories exhibit dynamical generation 

of mass and asymptotic freedom.A sign of quantum integrability is the 

existence of a conserved quantum non-local charge Q(1) . In certain ca- 

ses, the renormalization of the classical Q(1) - leads to anomalies. How- 

ever, for the non-linear ~ models on symmetric spaces G/H, the quan- 

tum Q[I)" " is time-independent provided H is simple 7) . In such a case, 

particle production is forbidden and the S matrix factorizes into two- 

body S matrices which (for consistency of the factorization) fulfill 

a Yang-Baxter equation (1.2) and can be calculated exactly 8) . More- 

over, all higher non-local charges are expected to be conserved as well 

so that there is a conserved quantum monodromy operator T(1) serving 

as their generating functional. 

T I) can be constructed from general properties, using ~, ~ and 

internal symmetries together with a factorization principle which re- 

lates the action of T(1) on k-particle states with its action on one- 

particle states 9)I0) . As the result, the one-particle matrix element 

of Tab(h) is expressed through the two-body physical S matrix as 

(a phase factor exp(i#(l,@)) cannot be ruled out completely). The quan- 

tum spectral parameter y(1) is a real odd function of I with the small 

I behaviour 

where c is model dependen t . From eq. (1.7) and the factorization prin- 

ciple one obtains closed expressions for all k-particle matrix ele- 

ments of T(1) in terms of products of two-body S matrices. Their struc- 

ture is identical to that of a k-sites monodromy operator in an inhomo- 

geneous vertex model with statistical weights Sa~,b~(%j+~(1)) , l<j<k. 

The Yang-Baxter equation (1.2) for S (~) finally implies that the 
a~,bB 

monodromy operators T(1) satisfy the Yang-Baxter algebra (i.i) with 

the quantum R matrix 

providing the structure constants. In particular, the trace of T(i) 

(i.e., the transfer matrix) furnishes an infinite dimensional abelian 

subalgebra: 

In the limit of eq. (1.5) one recovers the classical Yang-Baxter charge 

algebras. 
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These lecture notes cover the content of refs. 6,9,10 in which 

the results on the non-abelian charge algebras have been explained. 

In section II, the construction of the classical monodromy matrices 

and non-local charges and the computation of their canonical algebras 

is described in general and illustrated by examples. Section II.4 con- 

tains some remarks on the r61e played in this context by Kac-Moody 

algebras. In section III, the general method for the derivation of 

Yang-Baxter quantum charge algebras for the class of models under con- 

sideration is explained and applied to the O(N)/O(N-I) non-linear 

model and to the SU(N) chiral and O(2N) Gross-Neveu models. 

II. Classical Yang-Baxter charge algebras 

II.l. Classical monodromy matrices and conserved char~es 

We consider l+l dimensional field theories with an internal non- 

abelian symmetry group G. The associated Noether current, Ap(t,x) (ta- 

king values in the Lie algebra ~ of G) is supposed to be conserved 

~/.(,4 "~ =" 0 2 . 1 )  

and flat: 

L Q ~- 9A"" "4~" -- ~ q "4,,'~ 4" E "41'~ , ~ ~1"] = 0 2 . 2 )  

We a s s u m e  t h e  b o u n d a r y  c o n d i t i o n s  

/4/. (4,)¢1 ~')  0 ~.$ I x (  ~ o~ . 2.3) 

The main object of our interest is the monodromy matrix T(X,YII) which 

fulfills the equations II) 4) 13) 

9 
T g X , Y l ~ )  ~ -/-..(X',X)TtX','/l~) (2.4) 

aX ~ 

7"(x, yl:q = m(x , ' / l ~ , ) / . . ~  (Y~ .~) (2.5) .,) y.., 

T~,XaA~ = <£ (2.6) 
where 

L/.,OC, a~ =- ~ (a .4 , . , . ( kJ -~ , ,Av (X) ) ,  A~.4 (2.7) 

X~ ~,~) , Y ~ ~ ~', ~) , 3°,,'~ = to, =4 
Eqs. (2.1), (2.2) are the compatibility conditions of eqs. (2.4), or 

equivalently, of eqs. (2.5). We also introduce 



176 

T .t (X, ) '1  ~" &" ,,I..~.,, ~ T [X", Y I)I ]  

T" (¥ ,  ~,/ ~ t.'.,., T f k ' ,  YI'~I (2 .8 )  ~-~-~ 

Since L (X,I) vanishes for Ixl÷ ~, the monodromy matrix T(X,YII) becomes 

independent of t(t') as x(y) goes to infinity. In particular, T(1) is 

a time independent functional of the currents A (thus, of the basic 

fields of the theory) and generates an infinite series of conserved 

non-local charges 12) Q(n) 6 ~: 

T(>a= , .~,p~(,~),  Q(,q=, .,Z , ,~t- ~o,,) = 0 
"t.~ 

= (2 .9 )  ~°~ - 1 ~.I +- 

For later use, we note the transformation behaviour of currents 

and monodromy matrices under ~ (parity) and ~ (time reversal): 

{ AoO(i ~ ,4o(~) f Ao(Xl --~ -4o(-X) 
114 (X) ~ - A~ (",~'1 

L o / X , ~  --4 Lo OT,-al Lo (>(),k) ~ - L~ (-x,,k) 
L.,Cx,",,) -~ -C~/~ , -X)  L., (X, ~,I ~ -L, (-X,X) 

w i t h  X = ( t , - x ) ,  a n d  c o n s e q u e n t l y  f r o m  e q s .  ( 2 . 4 ) ,  ( 2 . 5 ) ,  ( 2 . 6 )  : 

(2.10) 

In several computations the following formula 14) will be used: 

where the time arguments t=t' have been dropped. To prove it, we con- 

vert, say, eqs. (2.5), (2.6) into an integral equation 

whence 

~T,~,~t~ ffi i~ ~ 
St-, i~ ~, ~ % 
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which is solved by expression (2.11) ; analogously the x dependence is 

determined, starting from eq. (2.4). 

II.2. Examples 

II.2.1. The chiral fermionic models6)are given through the Lagrangian 

(2.12) 

u + 
Here the y are the usual Dirac matrices, the I = -I (~= l...dim G) 

provide a unitary representation of the (compact) internal symmetry 

group G, 

where K S = t r ( I  I 8 )  = ( K - l )  e8 i s  t h e  K i l l i n g  f o r m  o f  G. S a ~ ( a = l . . . N ;  

~=i,2) is a fermion field in two-dimensional space-time. We shall deal 

with both commuting and anticommuting spinors. If we set G = SU(N) in 

the fundamental representation, we recover the chiral Gross-Neveu mo- 

del. The Hamiltonian of the theory reads 

H = j~WL-E~t~E~ - ~ ( - - . / ~ - ~ , ( - ~ ' ~ )  (2.13) 
. 4 e  

where y5 yo y1 = , and for the case of commuting spinors, the Poisson 

brackets are the usual ones: 

(2.14) 

If ~a~(t,x) is a Grassmann variable, however, we use 

where ~ and ~ denote the right and left derivativel5)in the 
8~a~ (x) 8~a~ (x) 

Grassmann algebra, respectively. For even functions A, B this Poisson 

bracket is antisy~metric and fulfills the Jacobi identity. 

rent 

It is easy to show from the equations of motion that the cur- 

( 2 .16 )  

, 4 2  = , 
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verifies eqs. (2.1) and (2.2). Moreover, its classical current algebra 

is given by 

[.¢.,c<~,,~v~,,~ ] = ,+:~ ;~,,-~ [4,,~,,,,_,,,~,,,~, TT] 
where ~ ' ~  

IT = ~ I~T ~ 

(2.17) 

(2.18) 

and we have used the tensor product notation 

Both assertions hold for commuting as well as anticommuting 

spinors. 

TO control the conservation of T(1) , we compute from eqs. (2.14) 

or (2.15) 

(cf. eq. (2.2)) , and using eqs. (2.11) and (2.4) , (2.5) : 

- -  l l 0  

= 0 upon partial integration. 

II.2.2. The Gross-Neveu model with the Lagrangian 

f • • 

provides another example. The symmetry group of the model depends on 

whether %au(a = I,...N; U = 1,2) is a commuting or anticommuting spinor. 

a) Commutin@ spinors 
16) 

We shall employ the notation 

('~,~) = ~ ( '~, 4, . , , . . .  - ~., 4',,,,, ],.,.,. #. ,~. . .  3,..-. 4,,~) T 

I4.Q. = £..~, U 6  U.~. = ~:¢& ~& 

The canonical formalism is given by the Hamiltonian 

Q.,, w . . .  ZW 
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~ 21U Z~ 

and the Poisson brackets 

0 

(2.20) 

(2.2l) 

Eqs. (2.20) and (2.21) exhibit the symplectic group Sp(N) as the sym- 

metry group of the commuting Gross-Neveu model. 

The conserved and curvatureless current reads 

and  t h e  c u r r e n t  a l g e b r a  i s  f o u n d  t o  be  

(2.22) 

(2.23) 

where 

(2.24) 

(P is a permutation operator: P(A ® B)P = B ® A, it coincides with ~T 

(eq. (2.18)) if G is U(N) in the fundamental representation.) 

b) Anticommuting spinets 

Going over from the complex spinets Ca~ (a = I...N) to Majorana 

spinors ~a~ (a = I,...,2N) we have the Hamiltonian 

+~ ZN ~ ~N Z 

and the Poisson brackets 

showing the O(2N) symmetry of the anticommuting Gross-Neveu model. 

The current 

(2.27) 
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is conserved and flat; the current algebra is 

with 

Notice that p-A coincides with~in eq. 

representation of O(2N) : Choosing 

we have 

(2.18) 

(2.28) 

(2.29) 

for the fundamental 

4~k~Z&Z~ 
j J 

Thus, the O(2N) Gross-Neveu model as well as the chiral fermionic mo- 

dels in II.2.1. provide explicit realizations of the Lie Poisson 

bracket construction in ref. 3 (Faddeev). The above classical current 

algebra holds also for the O(2N+I) case (whereas the properties of the 

quantum models might be different, due to different features of the 

representations of O(N) for odd and even N). 

The current algebras (2.17) and (2.23) are called ultralocal be- 

cause they contain the 6 function but not its derivatives. 

II.2.3. The chiral ~ model involves a field g(t,x) taking values in a 

Lie group G. The Lagrangian is 

where 

- - A. (230) 

-1 
(231) 

is the conserved and flat current. The symmetry group is actually 

GxG. G c a n  b e  r e p l a c e d  by  a R i e m a n n i a n  s y m m e t r i c  s p a c e  G/H,  l e a d i n g  

to the non-linear a model on G/H 4). For (2.30) , the Hamiltonian 17) 

a n d  t h e  P o i s s o n  b r a c k e t s  f o r  g a n d  ~ = ? o ( g - 1 )  T 
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lead to the non-ultralocal current algebra 9) 

The ~' function in (2.32) (caused by the spatial derivative in 

Al(t,x)) is a source of trouble in the determination of the charge 

algebra for the chiral models. 

(2.32) 

II.3. Computation of the charge algebras 

The Poisson bracket of any two charges Q(n) can be obtained from 

the Poisson bracket of the monodromy matrices. To determine it, we 

start from the chain rule: 

For the fermionic models (sects. II.2.1. and II.2.2.) we have 

where the classical r matrix is given by 

T~ for models (2.12) ~-~-, 

~(~) = ~(~+Z~. for model (2.19), co=sting 

"~.~.~/~,I~-/%~ for model (2.19) anticommuting. 

To derive eq. (2.34) from the current algebras (2.17), (2.23), 

respectively, one uses the formulas 

- 4 %,%,,,,)) 
A-A,t, 

(2.35) 

(2,36) 

(2.37) 

(2.28) , 
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4 

I n s e r t i n g  e q s . ( 2 . 1 1 ) ,  ( 2 . 3 4 )  i n t o  ( 2 . 3 3 )  and u s i n g  e q s .  ( 2 . 4 ) ,  ( 2 . 5 ) ,  

we find 

The result (2.38) shows that the canonical algebra of the monodromy 

matrices is a quadratic algebra: the Poisson bracket of two T's is not 

a linear, but a quadratic expression in the T's. 

The algebra (2.38) is called the classical Yang-Baxter algebra. 

Its structure constants (as well as those of the current algebra) are 

provided by the classical r matrix. The antisymmetry of the Poisson 

bracket (2.38) 

is assured because of 

An important property of the r matrices (2.35) - (2.37) is that they 

satisfy the classical Yang-Baxter equation 

I n  eq .  ( 2 . 3 9 ) ,  t h e  r . . ( t , ~ )  a c t  i n  a t h r e e f o l d  t e n s o r  p r o d u c t  space  
z ]  

rather than in a twofold one, the indices i,j indicating those spaces 

on which the action is nontrivial: 

for example. The classical Yang-Baxter equation is a sufficient con- 

dition for the algebra (2.38) to satisfy the Jacobi identity. 

Inserting the expansion 

into eq. (2.38), we obtain 

L=o 
(2.41 
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where ~ = 

I - 4gz 

- 2g P + [ )  

8g P-A) 

for models (2.12) 

for model (2.19), commuting, 

for model (2.19), anticom/auting. 

Eq. (2.41) gives, in particular, 

, T("~® 4 ]  

From eq. (2.41) one can obtain the algebra of the charges Q(n) (2.9) 

upon expanding the logarithm. For the SU(N) chiral Gross-Neveu model 

one gets, for example, 

• .Q ' ° ' ]  

~m4 
the  f i r s t  o f  eqs. (2.42) y i e l d s  

f - 4g for models (2.2) 
k = -4g for model (2.19), co~unuting 

8g for model (2.19) , anticommuting, 

so the ~(o) are the generators of the internal symmetry group G. w~ 

All the considerations in sect. II.3 rely on the current algebra 

being ultralocal. For the non-ultralocal case of the chiral ~ models, 

the 6' function in the current algebra produces singularities in the 

Poisson brackets of non-local objects: for example, the two integra- 

tions in the r.h.s, of eq. (2.33) do not commute. As a consequence, 

one does not obtain a classical r matrix solving the classical Yang- 

Baxter equation, hence, the Jacobi identity for the charge algebra 

fails. A detailed analysis of this problem can be found in ref. 9. 

II.4. Kac,Moody current algebras 

The formulas (2o17), (2.28) for the (equal time) current algebra 
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(c = fct. (coupling constant g)) can be rewritten in terms of 

A, ~xl - A o ~I  ± A~ ~ 
as follows : 

IA+ 9 A. - 0 
For the components of A+(x) with respect to a basis of generators I , 

we find 

(2 .44)  
A'_ } o 

Taking x-space to be a circle, x~[0,2~], and inserting the Fourier 

decomposition 

we have 

¥ 

Eqs. (2.44) or (2.45) show that the current algebra (2.43) is built up 

of two mutually commuting Kac-Moody algebras 19) with vanishing central 

charge. The result of sect. II.3 tells us that, going over to the mo- 

nodromy matrix T(1) as functional of the A 's, we obtain a represen- 

tation of the Yang-Baxter algebra induced by the representations (2.44) 

of the Kac-Moody algebra. 

It is well known that a quantization of the current algebra in 

general leads to extra terms in the commutation relations (2.44), the 

so called Schwinger terms, which can be computed perturbatively. In 

two dimensions they turn out to be finite. Taking the currents to be 

made up of free fermion fields which is equivalent to the large N li- 

mit one gets 18) 6) 

IO-~lTr (2.4G) 

or, for the redefined current 

C - 
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(2.47) 

and for the Fourier components of B+(x) : 

(2.48) 

Formulas (2.47) or (2.48) show that, in the approximation indicated 

above, the quantum current algebra consists of two mutually commuting 

Kac-Moody algebras with central charge + i. At present, it is not known 

whether one can construct, in analogy to the classical case, a functio- 

nal of the quantum currents providing a representation of the quantum 

Yang-Baxter algebra. The method for the computation of the quantum 

charge algebra explained in the next chapter avoids a direct use of 

currents. 

There is another representation of the Kac-Moody algebra with 

zero central charge going along with the classical models considered 

in section II. Here the generators are realized as infinitesimal sym- 

metry transformations of the field equations 20). This representation, 

which sometimes was wrongly apostrophized as algebra of non-local char- 

ges, is in fact an infinitesimal version of the Riemann-Hilbert trans- 

formation method to compute solutions of the field equations. Its 

drawback is that the transformations are not canonical (not extendab- 

le to phase space) 17) and cannot be taken over to the quantum models. 

Our conclusion is that the Kac-Mood~ algebra has its place at the 

level of current algebras, whereas the non-local charges generate a 

Yang-Baxter algebra, in the classical as well as in the quantum case 

to be discussed in the next section. 

III. Quantum Yang-Baxter charge algebras 

III.l General method 

The existence of a conserved monodromy operator T(1) in the quan- 

tum field theory involves a non-trivial renormalization problem since 

T(1) is built of products of arbitrary numbers of fields at the same 
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point. More precisely, the n-th charge Q(n) contains up to n+l fields 

at the same point. It is possible to construct a renormalized and con- 

served Q(1) for the O(N)/O(N-I) non-linear ~ model (21) and for the 

Gross-Neveu models i0) through short distance operator product expan- 

sion. The conservation of Q(1) implies the absence of particle produc- 

tion and ensures the factorizability of the S matrix 21). In general 
7) the renormalization procedure can lead to anomalies 

In principle, it is possible to extend this procedure to the higher 

charges Q(n) (n > 2). Practically, this seems impossible, so we shall 

instead follow a simpler and more direct way. Assuming the existence 

of T(1) as a time independent operator in the quantum theory, we de- 

velop a method that provides an explicit construction for it, giving 

closed form expressions for all matrix elements of T(I) in asymptotic 

states. 

The quantum T(X) will be constructed from the following general 

properties 9) i0): 

a) T(1) exists as a quantum operator and it commutes with energy- 

momentum: 

(3.1) 

b) T(1) fulfills a quantum factorization principle (eqs.(3.4), (3.5). 

c) ~, ~and internal symmetries hold in the quantum theory. 

To understand the meaning of 

figuration formed by two separated lumps: 

From eqs. ( 2 . 4 ) , ( 2 . 5 )  f o l l o w s  the  f a c t o r i z a t i o n  f o r m u l a  

(b), let us consider a classical field con- 

(3.2) 

G 

f o r  the  c l a s s i c a l  monodromy m a t r i x .  Eq. (3 .3 )  admi ts  a v e r y  u s e f u l  quan- 

tum g e n e r a l i z a t i o n  22) :  Le t  us denote  by 10,~> the  o n e - p a r t i c l e  asymp- 



187 

totic states of the theory, where O stands for the rapidity and ~ for 

the set of internal quantum numbers. We assume here all particles to 

be massive. The quantum version of eq. (3.3) relates the action of 

Tab(h) on k-particle asymptotic states to a product of Tab(1) applied 

to one-particle states: 

~,,... e~.~ ~' 

and 

%...%., ~ ~.~ 

where 0. > 8. for i > j. Eqs. (3.1), (3.4) or (3.5) and the orthogona- 
3 

lity of k-particle states imply that matrix elements of Tab(1) between 

states of different particle numbers vanish: I ~ 0  ~ = Ca.}~%O t 

<e.,,.,...8~%IZTj~),'P'~]le'.d> = 0 =~ s~./,,e~ -_ s,',,,Co' 
Taking the difference of the squares, we have 

+ y "  - ,4  

thus either k = i, or the matrix element vanishes. The one-particle 

matrix element reads 

<8~lTa&(x)l@(~> = ;(8-e') ~,~ ( A , O )  (3.6) 

The asymptotic states of the theory being connected as usual by 

the S matrix through 

fin> = S lout> 
we have the identity 

(3.7) 

With the help of eqs. (3.4), (3.5) this gives for two-particle states 

7_. 
(3.8) 

where S (02-01 ) stands for the two-particle S matrix 
c~1c~2, ~ ' 1 ~ '  2 
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(here + holds for bosons and - for fermions). Eq. (3.8) can be re- 

casted in the form of a matrix product on one-particle Fock indices: 

where 

with P the permutation operator (eq.(2.24)), and 

Eq. (3.9) shows that T ,~^(~,8) is a representation of the (quantum) 
3%a~ D~ 

Yang-Baxter algebra ' associated to R(0), acting on an N-dimensional 

space (a,b = I...N) with 0 as spectral parameter. 

Following (c), Tab(1) is further restricted by the invariance of 

the quantum theory under ~ and ~. The quantum analogue of eqs. (2.10) 

is the existence of a unitary operator ~ and of an antiunitary opera- 

tor "~ = P~ such that 

T -C :, 
or 

and 

T(A) ~ - '  = Tt -A~-  
o r  

In eqs. (3.11),(3.12) 

(3.11) 

(3.12) 

T -I stands for the inverse operator in Fock space 

and for the inverse matrix in the N-dimensional auxiliary space. This 

gives on one-particle states 

and 

Since /8,~> (~ = I...N) are possible particle states in the theory 

(they usually correspond to the fundamental fields) we can consider 

the S matrix Sa~,bS(@ ) which satisfies the factorization equations 8) 
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S,.q,,..,. ¢#) $&~,5~., (~+~') S~,,,, ~;. {e9 -- 
= S['z('~,k,k, CO') ~44k~/k. gl (e+e#)Sk.~kL, ,)'d[Z (8) ; 

the u n i t a r i t y  r e l a t i o n  

(3.15) 

and the real ana l y t i c i t y  condition 

~) ( - ~ )  (3.17) 

This provides an explicit solution of eqs. (3.8),(3.13),(3.14): 

where the quantum spectral parameter ~ is a function of I only, and 

@(I,8) is  a real phase. Eqs. (3.13), (3.14) and (3.16), (3.17) imply 

and 
(3.19) 

When a continuous symmetry is present like in the non-linear o model, 

SU(N) chiral Gross-Neveu and O(2N) Gross-Neveu models, an expansion of 

T(1) and S(8) into irreducible channels (see refs. 9,10) shows that 

(3.18),(3.19) provide the general solution of the problem. 

All matrix elements of Tab(1) can now be computed using the one- 

particle matrix elements (3.18) and the factorization principle (3.4), 

(3.5) : 

o -- 

k 
i 

where O. > 8. for i > j. This formula displays the formal coincidence 
z 3 

of Ta{~,},b{~} (I'{8}) with the monodromy matrix in the statistical me- 

chanics of an inhomogeneous vertex model on a line of k sites, the 

statistical weights being Saj_i~, J ,aj~j (Sj+y (I)) : 
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I . . . .  . . . .  " - I  
The algebra of quantum monodromy operators fo~lows from (3.20) 

and the Yang-Baxter equation (3.15): 

Here, the product over Fock (greek) indices is understood, and the ten- 

sor product is over matrix (latin) indices. Since eq. (3.21) takes the 

same form in all k-particle subspaces, it holds as an operator equation 

in the whole Fock space. It can be written in the more compact form 

where 

So we find that the quantum R matrix is (up to a permutation of indices) 

equal to the two-body S matrix for states |aS,b0'> at @ = y(1),0' = y(~) ; 

the phase @(l,@) drops out of the algebra. 

Quadratic algebras (3.22) of Yang-Baxter type are characteristic 

of integrable field theories and of integrable statistical models 3) 

However, all the Tab(l ) are conserved here and not just the trace 

the latter generating an abelian subalgebra of the charge algebra: 

The classical monodromy matrix is invariant under Lorentz trans- 

formations ~ 

However, since the rapidity transforms as 

the quantum spectral parameter y(1) carries a representation of the 

Lorentz group 

leading to a nontrivial transformation behaviour of the charges. 
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III.2. Examples 

III.2.1. The O(N)/O(N-I) non-linear a model 

The spectrum of this model contains an N-plet of massive partic- 

les transforming under the fundamental representation of O(N). Their 

scattering is governed by a factorized S matrix; the two-body S matrix 

reads 8) 

where 

(3.24) 

(3.25) 

The first two renormalized charges read explicitly 21) 

(3.26) 

with 

(3.27) 

From these formulas one can check that our basic assumptions (a),(b) 

and (c) are fulfilled to orders I 1 and 12 . Applying the general for- 

malism in section III.l, we identify 9) 

(3.28) 

To get information on the functions y(1) and ~(1,8), we expand both 

sides of eq. (3.28): On the l.h.s, we get from eqs. (3.26),(3.27): 

(3.29) 

Expanding the r.h.s, of eq. (3.28) around -i = 0, Stirling's formula 

yields 
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s,,~,~¢(~+~).. (4  a ( ~ ) ~ - ~ } < ~ ; ~  + -p~ (-F ~ +o~ );~.~, 

Both expressions match if 

(3.30) 

# - z  ) 

as I ÷ 0. Inserting eqs. (3.24), (3.25) into the Yang-Baxter algebra 

(3.21), we finally get the commutator algebra for the monodromy opera- 

tors Tab(1) : 

[~(.,~,T~,~ ~,'~ = ~,_~" .~.~_~,,.~ ~' (~(~,) ~(,~1-~'~ ~ L ( ( ~ )  (3.32) 

The Yang-Baxter equation (3.15) guarantees that the algebra (3.32) 

satisfies the Jacobi identity, unlike the classical case. 

III.2.2 The O(2N) Gross-Neveu model 

This model (2.25) has a rich spectrum containing kinks, elemen- 

tary fermions and bound states. The physical S matrix of the elemen- 

tary fermions (taking generalized statistics into account) coincides 

with the O(2N)o model S matrix up to a CDD pole 5). 

S ~" (0~ = si.~o+~,~ ~.~ 

The c h a r g e s  Q(O) and Q(1) o f  b o t h  mode ls  a r e  e q u a l  up t o  a ( g - d e p e n d e n t )  

n o r m a l i z a t i o n  f a c t o r ,  h e n c e ,  o u r  a s s u m p t i o n s  (a) - (c) a r e  v e r i f i e d  up 

~(13). We get for the matrix elements of Tab(1) between states of to 

elementary fermions 

with 

2~i 
The commutator algebra looks as in eq. (3.32), the factors ~ being 

iT replaced by ~. Comparing with the classical charge algebra (2.38), 

(2.37) 
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we see that both algebras cannot be isomorphic, due to the in in the 

second term of (3.32). However, in the classical limit (g ÷ 0) we re- 

cover the classical result (3.35) through the correspondance 

{ , }--~ - i[ , ]. 

III.2.3. The SU(N) chiral Gross-Neveu model 

This model is given by the Hamiltonian (2.13) with G = SU(N) in 

the fundamental representation. Its spectrum contains an N-plet of 

massive particles transforming under the fundamental representation 

{N} and an N-plet of their antiparticles transforming under {N}. Mul- 

tiparticle states are denoted as 

ILK I" .  C" ... o,,c~ > (3.36) 

with ~. = +(-) standing for a particle (antiparticle) SU(N) label. 
l 23) 

The S matrix factorizes into the two-body S matrices 

+ ('i"',,I 

where 

The action of Q(0) and Q(1) on the states (3.36) is i0) 

i 

... e~c~ > ~  -- ~I o.., (3.38) 
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where 

'~s;~',e'llc,'J = ( H + (3.39) 

and 

Again, to orders ~i and 12 our assumptions are fulfilled. The method 

of sect. III.l gives, taking the SU(N) transformation behaviour of 
I0) 

the various labels into account 

<ed+l~ P,) (0 ~c÷) = ~¢~-eq ~,~,~ (o +~¢~)) e i$c~'°) 

From eqs. (3.38), (3.39) and (3.37) , we find the expansions 

+(~:~ ~ t ~ ( - ~  - ~-- -~,a)I~ ;~  -~ 
and 

(3.42) 2~; %h 

Eqs. (3.41) and (3.42) coincide provided 

~-( ,~ ,, ~-~-p-~, + #'04 (3.43) 

It has been argued in ref. 5 that the physical particles in this 

model are more naturally described by field operators obeying genera- 

lized statistics. The corresponding physical states ~8~e~ are connected 

by physical scattering amplitudes 

4 L r  ~Ce} 

ei~ [COl 
This shows that the one-particle matrix elements of Tab(h) are given 

by the physical two-body S matrix without any phase (up to e(l 3) ): 

A 
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The commutator algebra of the quantum monodromy operators follows 

from eqs. (3.21),(3.37): 

Comparing with the classical algebra (2.38),(2.35) 

we see that if the expression (3.43) for y(1) is exact, then the clas- 

sical and quantum charge algebras are isomorphic with respect to 

{ , }+--+- i[ , ]. 
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ABSTRACT : 

The exact equations for the spectrum of the finite and infinite 

quantum Toda chains are derived. The method used does not need the exis- 

tence of the pseudovacuum (reference) state and provides thus an alter- 

native to the Bethe ansatz method. The results obtained are in good 

agreement with those of B. Sutherland and M. Gutzwiller. 

O. INTRODUCTION 

The Toda chain that is the one-dimensional system of equal par- 

ticles with the exponential interaction of nearest neighbors was intro- 

duced by M. Toda in 1967 [i] and since that time is one of the most 

popular models in the theory of the cOmpletely integrable systems. 

Among the papers concerning the Toda chain in classical mecha- 

nics one must mention [ 2 ] where the complete integrability was proven 

and an exhaustive investigation was carried out of the classical infi- 

nite Toda chain and also the papers [3] where the action-angle varia- 

bles for the finite periodic chain were constructed. 

The investigation of the quantum Toda chain in contrast with 

the classical case is far yet from being completed. The complete inte- 

grability of the finite quantum Toda chains with free or periodic boun- 

dary conditions was probably first proven in [ 42 . The first important 

(*) On leave from Steklov Mathematical Institute, Leningrad, USSR. 
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step in investigating the quantum infinite Toda chain was made by 

S. Sutherland [ 5 ] who has noted that the Toda chain represents a 

degenerate case of another well known completely integrable model, na- 

mely the one-dimensional system of equal particles interacting in pairs 

via the potential i/sh (x i - xj) [6 ] . This fruitful idea was not un- 

fortunately developed by him in its full extent. 

A ~ompletely different approach was proposed by M. Gutzwiller 

[7] who had succeeded in transferring the ideas of the above mentio- 

ned papers [3] to the quantum case. Having rewritten the Hamiltonian 

of the periodic Toda chain in the base of the eigenfunctions of the 

open chain,Gutzwiller has shown that the problem of finding the spec- 

trum of the Hamiltonian and higher integrals of motion for the N-parti- 

cle periodic quantum chain reduces to solving a system of N-I (the to- 

tal momentum being fixed) identical spectral problems for functions of 

one variable. Such a reduction of the N-dimensional problem to the one 

dimensional one can be considered as a version of separation of varia- 

bles. Lacking efficient formulas for the open chain eigenfunctions for 

arbitrary N, Gutzwiller could investigate only the cases N = 3 and N = 4 

though the formulation of his results can easily be generalized to ar- 

bitrary N. 

After creation of the quantum spectral transform method (QSTM) 

[8~ which seems at present to be the most universal and powerful me- 

thod of treating the quantum completely integrable systems several at- 

tempts were made to apply it to the quantum Toda chain [ 9 ] . However 

only a little progress has been achieved up to now because of the ab- 

sence in case of the Toda chain of the so-called pseudovacuum (see 

below § 3) which makes the direct application of the Bethe-ansatz im- 

possible. 

The present article originates as a result of combining the 

ideas of the paper [7 ] and QSTM [8,9] which has brought double profit. 

First, for the periodic quantum chain we have succeeded to separate the 

variables in a form close to that of Gutzwiller but for arbitrary N. 

The application of the so-called R-matrix formalism was extremely use- 

ful here resulting in a drastic reduction of the calculations. Second, 

and maybe the more important result is that the arsenal of QSTM is 

enriched now with a new powerful tool which hopefully will permit to 

increase the number of solved models. 
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The paper is organized as follows. The first paragraph contains 

the description of the model and fixes the notation. The paragraph 2 

deals with the classical Toda chain. Though it reproduces already known 

results, the way of presentation based on the R-matrix formalism is new 

and clarifies the analogy between the classical and quantum cases. The 

third paragraph is crucial for the whole article. It contains the deri- 

vation of the equations determining the spectrum. The paragraph 4 is 

devoted to the infinite quantum chain. It is shown there that the de- 

termination of the spectrum reduces in this case to solving integral 

Fredholm equations of a form which is very close to the usual Bethe- 

ansatz integral equations. It is interesting that the equations ob- 

tained are almost the same that those derived previously by 

B. Sutherland on the basis of a totally different approach. 

I would like to express here my gratitude to I.V. Komarov who 

has influenced my understanding of the papers 3,7 and has given me 

an impetus to write the present article. I would like also to thank 

L.D. Faddeev, A.G. Reyman, Yu. N. Reshetikhin, M.A. Semenov-Tian-Shansky 

L.A. Takhtajan, O. Babelon and H, de Vega for their interest in ~he work 

and useful discussions. I am grateful to LPTHE for hospitality. 

1. DESCRIPTION OF THE MODEL 

Consider the chain (finite or infinite) of one-dimensional non- 

relativistic particles of equal masses m which are described by the 

quantum mechanical coordinate ~n and momentum Pn operators satisfy- 

ing the canonical commutation relation [ Pm ' ~, ] = -~k~" The 

energy of the system is the sum of the kinetic energy for each parti- 

p~/2m and of the potential interaction of the nearest neighbours cle 

Since the system is characterized by the only dimensionless para- 

meter ~ ~ ~3_4/~ V.~/z ~_ 4 = / we shall choose, following [ 7 ] , 

the quantities m, V and ~ to be the units. Note that then ~= ~ . 

It will be also convenient for us to use the quantities Pn and 

- = e~ ( ~ ~) satisfying the commutation relation 

[ ] : 



and the constraint 

(1.2) 

as the principal dynamical variables instead of Pn and ~ . 

In the classical limit ~ --~ O the commutation relation 

(i.i) is replaced by the Poisson brackets relation 

Our final goal is the investigation of the infinite Toda chain 

whose energy, taking in consideration the above conventions, is 

where the energy density 

is subtracted in order to cancel the volume divergence. Here and below 

< X >i<0 I X I0> stands for the expectation value of the observable X 

on the vacuum }0>. 

Concerning the vacuum state 1 07 we assume the following hypo- 

theses. 

a) Normalization. <010>= i. 

b) Translational invariance. 

r-~ 
For some positive ~j there exists the unitary translation operator U 

defined by 

p~ "Eft = ~ ~, (l.6a) 

e - 
(I .6b) 
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The vacuum |0>is required to be invariant under U : 

U Io > - Io> (1.7) 

Comment I. In particular, it follows from (1.6) and (1.7) that 

<e-+> =,-, <eo > 

Since we always have the freedom of unitary transformation of the form 

, DC_+I~ _+ ~ ~ (9 under which the 

quantity %) = < eo+><~o-> is invariant, it is reasonable to fix 

x in some way, for example, requiring that <Co÷> _-- < eo->_-~ '/2 

Comment 2. By virtue of the translational invariance, the vacuum energy 

density ~ (1.5) does not depend on n. 

Comment 3. The definition of the translation operator U including a 

constant ~ which must not necessarily be 1 may seem not quite usual 

but it gives the opportunity to describe the effects of expansion and 

contraction of the crystal lattice due to changes of pressure or 

The quantity ~ ~ ~)plays here the role of the volume temperature. per 

particle. 

Comment 4. In the variables = L-I the operator U acts in 

V ~  ~ + . The term in the the usual way = n~ +4 

energy a~uires however the coefficient ~ 

C) Superselection rule. 

We shall assume that the Hilbert space ~ of the states of 

the system is expanded into the direct integral of spaces ~i ~ 6 ~(D) 

which are invariant for all the observables and in each of which the 

representation of the algebra (i.i) of the observables p~, e~ ~ is 

scalar. It is assumed also that the vacuum vector I O~ belongs to 

the subspace ~4 corresponding to ~ = i. As we shall see later, the 

quantity ~%) plays the role of the total volume of the system. 
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From the physical point of view it is most natural to consider 

the infinite Todd chain under a constant pressure ~ which is defined 

as the vacuum expectation. 

2= >o 

It is obvious that due to the translational invariance 2 as ~ (1.5) 

does not depend on n. It is supposed that the vacuum I 0> corresponds 

to the state with the minimal enthalpy density 

= - j.._, ( 1 . 8 )  

in the class of the translationally invariant vacua corresponding to 

various values of ~ ~ 0. Moreover, it must correspond to the minimal 

enthalpy 

: E - jO/, , .  (1.9) H 

among all the states corresponding to given ~ . One sees from (1.8) 

and (1.9) that the quantities (- ~ ~ ) and (- ~ ~ ) , as men- 

tioned above, play the roles of the volume per particle and the total 

volume respectively. 

The validity of the assumptions made is quite obvious in the 

classical case. In fact, the translationally invariant vacuum ~ 0~cor- 

responds in classical mechanics to the state 

= &-J (I.I0) 

(the normalization eo~= 1 is taken). The energy density is 6 = ~. 
F -~ 

The enthalpy density ~ = i-, - ~ ~ reaches its minimum when 

The quantitiy ~ is defined in the classical case as the limit 

(1.11) 
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The physical sense of the parameter 

asymptotic shift 

N+ -~+_oo 

is simple. It determines the 

( %+ - (1.12) 

The phase space of the system is thus foliated into the submanifolds 

= const on which the Poisson bracket is nondegenerate (that is 

there is no functional other than a constant commuting with Pn and 

~ ~ ). One can show that the enthalpy H(I.9) constructed with 

defined by (I.ii) or (1.12) is in fact positive for all excited states. 

The necessity of considering the states with non zero shift ( ~ ~ i) 

follows, for instance, from the fact that the one-soliton states [1,2 ] 

are of this type. 

As for a rigorous proof of the hypotheses a)-d) in the quantum 

case we hope that it will be available soon due to the recent progress 

in calculating the Green's functions in the quantum completely integra- 

ble models [i0 ] . 

Besides the infinite Todd lattice we shall also deal with the 

variants of the finite Todd chain which are described below. 

Consider the system of N one-dimensional particles which are 

labelled by the number n = N_, N_+I,..., N+, supposing that 

W+-N_ + 4  = N (1.13) 

As previously, we describe the particles by the dynamical variables 

p~ ) ~ (i.I-1.2) . 

The Hamiltonian of the ~uasiperiodic Todd chain is given by 

N+ 14+-I 

= y L  e . e $  
~:N_ n--N- 

(1.14) 

where x > 0 is a constant. For x = 1 the Hamiltonian (1.14) describes 

the periodic and for x = 0 the ope n Todd chain. 
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Let us define the unitary translation operator U by 

= ~ + 4 ~ = ~ e71+4 (1.15a) 

for ~ = ~_ ~ ,.., N+- 4 and 

V&÷ V &_ 
_~ -~T-  ,~ ~ I~'-'f)IN 

= x (1. Sb) 

One verifies easily that U N = 1 and ~ ~N (x) ~_4 = ~ (~) 

As for the infinite chain, the quasiperiodic Toda chain rewrit- 

ten in the variables ÷ ; - = 2~ N,)reduces to the periodic 

one but with a different strength V = 9~ 4/N • 

To terminate the paragraph let us discuss the connection between 

the quasiperiodic chain (1.14) and the infinite One (1.4). Consider 

first the classical case. 

Let us substitute in (1.14) 

(1.16) 

and take the limit N•~ _-~ o~ . We shall show now that the limit 

being taken, the quasiperiodic Toda chain becomes the infinite chain 

with the density and the asymptotic shift determined by the parameters 

_r-- and ~ respectively t.J 

To begin with, note that the equilibrium state (vacuum) for the 

quasiperiodic chain (1.14) is 

+ ± ~/~ 
p~ =o , e~-= x ~ ~= N., .... N+ (1.17) 

4 
(the normalization e o- = 1 is assumed) and upon substituting (1.16) 

for ~ = 1 it becomes in the limit ~ ~ ~ o o the vacuum 

(i.i0) for the infinite chain. It seems reasonable to suppose that as 

N~ ~ ~ ~ the configurations corresponding to the excited 
• + 

states would be spatially localized and the variables f~ , ~- would 

thus go to their asymptotic values 
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py =O ev + _ ±~Iw ~ ± ~ I ~  ~ ±#  U_+_H,(1.18) ) = X. = ~ ) _ - 

as o~ ~ + OO 

Upon substituting (1.18) into (i. Ii) and taking in consideration 

(1.13) we obtain an identity. The definition of ~ and ~ by 

(1.16) is therefore equivalent to the previous definitions (l.6b) and 

( 1 . 1 1 )  . 

One needs also to check up the correspondance between the ener- 

gies of the quasiperiodic chain (1.14) and of the infinite one (1.4). 

Using (1.18) and the hypothesis of the locality of the excitations one 

obtains that the contribution 4/14__ ~M~ of the term ~ ~NI el÷ 

to the energy EN(X) of the quasiperiodic chain cancels the contribu- 
r-, 

tion ~_w of the same term to the vacuum energy E ~ VaC. C ~  in the 

limit ~--~ ~ . The following relations are thus valid 

----- - -  vac. ) 
N --~ oo N (1.19) 

W -..,, oo 

The question of the rigorous justification of the similar limit 

transi£ions in the quantum case goes beyond the scope o~ the present 

paper. We shall limit ourselves here by simply postulating the relations 
r~ 

(1.19-1.20) and taking (1.16) as definition of ~-, and 

2. THE CLASSICAL TODA CHAIN 

In this paragraph mainly well known results [ 1,2,3 ] concerning 

the complete integrability of the classical Toda chain are reproduced 

in the framework of the r-matrix formalism. 

Let us consider the classical quasiperiodic Toda chain, and 

following [9,11~ put into correspondance to the n-th particle 

(n = N-, .... N+) the 2x2 matrix L ~  depending on a spectral para- 
i 

meter u. 



205 

[,. ('aa,) = Q ~-e~- e~ -e~*O ) (2.1) 

Let us introduce also the monodromy matrix 

' ( AN ('~') 

DN(~) (2.2) 
J 

and its weighted trace 

_ 4/z ^ ~/z 
<(~,~) -_ ..XT.. /.4N(a..) + ~ ~ (x*.) = ~ X <(*tO} (2"3) 

where x" ~/z O ) 
X = (, o x "1"- 

the constant x ~ 0 being the same as in the Hamiltonian (1.14) of 

the quasiperiodic chain. 

Note that by virtue of (1.2) the matrix L (~) and conse- 

quently T~ (~) are unimodular 

o6Jc L~(~.) = "I, 

%(,U.) = ~M(~)~ [~)_ ~(~)C ('.4w%)= "1 (2.4) 

Let 

bracket between ( L.~ {4"'} ) ~4 

presented as the commutator 

The r-matrix method is based on the following remarkable fact. 

L,~ (~) & be a matrix element of & (~) . Then the Poisson 
a~ 

and ( ~ (~/)) ~z can be re 

~4 az  

of the quantities 
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64 ~z _ M QA ~ ~Z 

(2.6) 

and ( [.~ (A,.)(~ Lv~ (~#-)) o.~o.t o.4 ctz 

considered as 4x4 matrices [ 8,9 ] . 

It is easy to see that the identity (2.5) for the L-operator 

(2.1) entrains the analogous identity for the monodromy matrix ~(~) 

(2.2) which can be written in matrix notation[8,9] as 

(2.7) 

The complete list of the relations contained in (2.7) is given in the 

Appendix A. 

Noting that the identity holds 

= 0 (2.8) 

for the matrix X (2.3) and the r-matrix (2.6) and using the equality 

(2.7) one obtains that the quantities tN(u,x) are in involution 

From the definitions (2.1), (2.2) and (2.3) it follows immediate- 

ly that tN(U,X) is a polynomial in u of degree N with the coefficient 

x "I/2 at the highest power of u 

In particular, 

"~'d = -- ~ , (2. lla) 
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(2.11b) 

where 

P.--  L P,- 
'~=N_ (2.12) 

is the total momentum and EN(X) is the energy (1.14) of the quasi- 

periodic Toda chain. 

By virtue of (2.9) the coefficients ~ ; (~ = i, .... N) of the 

polynomial tN(u,x) are in involution. Moreover, one can show [ 3 ]that 

they are functionally independent. Since the quasiperiodic Toda chain 

has exactly N degrees of freedom and its Hamiltonian EN(~)-4 z - ~ - ±~ 
can be expressed in terms of t~; the complete integraSility of the 

system in the Liouville's sense is thus established. 

It is more convenient to use the quantity 

(2.13) 

which due to (2.10) expands as ~ ~ ~o like 

-4 -~ 
-~,I~(.~A,, ~,. ) = ~/ ~,'w~ A,~, _ 4-- ~ 9 C 2 ~  -I" -~11A' +-.,. +-~° LA'+,,.(2.14a) 

where 

(2.14b) 

Using the methods of [ii ] one can show that the coefficients 

~ being like t~ integrals of motion are local that is represen- 

table as sum of the terms (densities) containing p~ , e~ +- for no 

more than j neighbor particles. 

For those accustomed tO the traditional approach [2,3 ] let us 

notice that it is equivalent to ours. In fact, the first-order 
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difference linear problem [9,11] 

(2.15) 

lying in the base of our approach is easily transformed by using the 

explicit expression (2.1) for the L-operator into the second-order dif- 

ference linear problem 

(2.16) 

which coincides up to a non essential change of notation with that 

used in C 2,33 . Moreover, one can verify that the trace t(u) (2.3) 

the monodromy matrix (2.2) for the linear problem (2.15) coincides 

the determinant of the jacobian matrix corresponding to (2.16). 

of 

with 

Let us describe now a construction of the action-angle variables 

for the quasiperiodic Toda chain. The construction given below re- 

presents essentially an adaptation of the approach of the papers [ 3 3 

to the linear problem (2.15). The utilization of the r-matrix formalism 

adopted here has the following advantages. First, less calculation is 

needed in treating the Poisson brackets. Second, the whole construction 

can immediately be trasferred to the quantum case. And third, the cons- 

truction can be generalized to other models permitting the application 

of the r-matrix method. 

Let us go now to the construction itself. Following [ 12 ] we 

define the variables u. as the roots of the polynomial C(u) of the 
3 

(N-l) ~th power 

C C,~,~ ~ : o , -I'= . , .  . . . .  ~ N-~, 
(2.17) O 

One can show 

can order them, 

[3 ] that all the u. are real and, consequently, one 
3 

ix~ ( A~ z < .... ~A~N _ 4 

4- 
We define also the variables ~- "d by 

= A . ~ j )  , = D . ~ )  , ~ = t  .... N - ~  (2.18) 

for example like 
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Note that, by virtue of (2.4) 

-- /I (2.19) 

The central point of the whole construction is the calculation 

of the following Poisson brackets 

- ) ~ k -  : O j 

(2.20) +_ 

Let us show, for example, how to calculate the Poisson bracket 

£ ~ Jx~'; ~k @ } . Using (All, AI2 ) one obtains 

T h e  r e s t  o f  e q u a l i t i e s  ( 2 . 2 0 )  a r e  v e r i f i e d  i n  t h e  same m a n n e r .  

+ 
The equalities (2.20) give the opportunity to represent ~-- 

as ~--= e~.~ (~'2/'~) where ~. are the momenta canonically conjugated 

to uj that is { ~r~-~ I = ~ It follows from the reality of uj and 

the obvious relation ]-(~ ) = -~(4~) that vj are also real. 

Adding two variables P ~ PN and Q = -~ eN~ to the set 

uj, vj we obtain a complete set of canonical variables on the phase 

space of the quasiperiodic Toda chain (one can easily verify using 

(2.7) and the asymptotics (2.21) that P and Q ~ommute wi£h all the uj, 

vj) . The completeness means that any observable can be expressed in 

terms of P, Q, uj, vj. The general proof can be found in [ 3] . Here we 

shall illustrate this statement on the example of the elements 

AN(U), BN(U), CN(U), DN(U) of the monodromy matrix (2.2). In fact, the 

polynomials CN(U), AN(U) , DN(U) are unambiguously determined from their 

values at u = u~ and their asymptotics at u --~ oo 
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(2.21a) 

A w ( , u , )  = ~ N  _ p~N-1 + O(~Iv'z) (2.21b) 

(2.21c) 

Using the Lagrange's interpolation formula one obtains 

I V - 4  N . A 

N-4 

~he expression for BN(U) can then be obtained from (2.4). 

(2.22a) 

N-4 

PT + 

(2.22b) 

2.22c) 

The variables P, Q, uj, vj as mentioned above form a complete 

set of canonical variables. Though they are not exactly the action- 

angle variables the latter are obtained from them by a standard proce- 

dure which is described in detail in [3 ] . So, we shall not more deal 

with them and proceed now to the quantum case. 

3. THE QUANTUM QUASIPERIODIC CHAIN 

Let us consider the quantum quasiperiodic Toda chain defined by 

the Hamiltonian (1.14) written in terms of the dynamical variables 

p~ ~ ~ ± satisfying the commutation relations (i.i) and the cons 

traint (1.2). In order to preserve parallelism in treating the quantum 

and classical cases and to avoid rewriting many classical formulas 

which survive also in the quantum case we do not change the notation 

and denote the majority of the quantum objects by the same letters 
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that the corresponding classical ones. 

where L,~ (,u.) "" L.,~(..'~) 

To begin with, let us introduce the quantum L-operator, the 

quantum monodromy matrix and its weighted trace by the same formulas 

(2.1), (2.2) and (2.3) respectively as in the classical case paying 

attention that ~ , e~ +- are now the quantum operators. The relation 

(2.5) is replaced in the quantum case by [8 ] 

R (~-~) L~ ~,,.,.) L . ~ ,  : [~ ~ L.~ ,  ~ ~ ~-~) 
(3.1) 

) L~(~) = I~ L ~  [A.,t. ] and 

0, 40,,-L 

= A~ &4 bz &~ 84 (3.2) 

As in the classical case the analogous identity holds for the 

monodromy matrix 

[~(~-~) 7 ~ ) T ( ~ - )  = T ( ~ )  T ( ~ )  R ( ~ - ~ )  (3.3) 

The complete list of relations contained in (3.3) is given in Appendix 

B. 

The identity (3.3~ plays in the quantum case the same role as 

(2.7) in the classical case providing the commutativity of the operator 

valued functions tN(U,X) 

~N(~,x) , [ ~,x)] = O (3.4) 

As in the classical case the functions tN(U,X) and ~N(U,X) = 

tN(u,x) have the expansions in powers of u (2.10-211) and (2.14) 

respectively. The function ~N(U,X) can thus be considered as a genera- 

ting function of the local integrals of motion. 

The principal problem in studying the quantum quasiperiodic 

Toda chain is to determine the spectrum of its Hamiltonian (1.14) and 

higher integrals of motion or, which is the same, to determine the 
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spectrum of ~(u,x) . It is worth mentioning that from the mathematical 

point of view the problem is mostly an algebraic one. The matrix ele- 

ments A, B, C D of TN(U) for different N can be considered as repre- 

sentations of the same infinite-dimensional associative algebra with 

the quadratic constraints given by (3.3), the R-matrix (3.2) being the 

set of the structure constants of the algebra [13 ~. There is strong 

resemblance between the commuting family tN(u,x) and the Cartan sub- 

algebra in the theory of the Lie algebras. The quantum determinant 

(B.17 - B.18) can also be considered as the set of the Casimir opera- 

tors of the algebra. For more information on the algebras with quadra- 

tic constraints and their applications to the quantum completely inte- 

grable models see [14 ] . 

The usual way to find the spectrum of tN(U,X) known as the alge- 

braic Bathe ansatz [8] is as follows. One needs first to find a vector 

(analogue of the lowest weight in the Lie groups representation 

theory) such that C (~) -~=O ~. The eigenvectors f of t(u) are 

then written in the form f = B(Ul)...B(u ) . A simple algebraic mani- 

pulation using (3.3) provides then a system of equations for determi- 

ning values Of ui(i = i, .... ~) as well as the corresponding eigenvalue 

of t N (u) . 

Unfortunately, in the case of the Toda chain the method does not 

work. The reason is the absence of the vector ~ with the needed 

properties. It follows for instance from the absence of zero eigen- 

value for the operator eN~ which determines the asymptotics (2.21a) 

of C(u) as Ax--~ 

The main idea of our approach is borrowed from the paper [ 7 ] 

of M. Gutzwiller who realized that the proper quantum analogue of the 

Flaschka-Mc-Laughlin-Kac-van Moerbeke construction [3 ] consists in ex- 

panding the operator tN(u,x) in the eigenfunctions of the (N-I)- parti 

cle open chain (the eigenvalue of the total momentum PN being fixed). 

In our language it means expanding in eigenfunctions of CN(U). In fact, 

it follows from (B.II) that [ CN~) ; CN{~) ]= o and from (2.2) that 
m 

C N (~w.) = aN+ A~_4(4~)where AN_~ ~4~ ) due to (2.3) for x = 0 

contains integrals of motion for the open (N-I) particle chain (this 

observation belongs to I.V. Komarov £129). 

Now, let us suppose by analogy with the classical case that the 

fo rmula  (2.22a) i s  v a l i d  a l s o  in  the  quantum case ,  ~ c ~ ~ be ing  

now a commutative family- of self-adjoint operators. Let us introduce 



213 

+ 
the operators ~" by the formulas 

where the sign --~ means that the operators u. are substituted into 
3 

the operator-valued polynomials AN(U) and DN(U) to the left, that 

is, for example a polynomial ~(~)= 7___ XkA~ ~ is replaced by the 

operator X ~ ~ ~ Axe)= ~ ~ ~X~ . This convention is essential 

since the operators u. and A(u), D(u) generally speaking do not com- 
3 

mute. 

As in the classical case we supplement the set of variables uj, ~.+_ 
with the variables P = PN and eN+ ° 

Using the formulas (BI-16) and the definitions (2.22a), (3.5) 

one can derive the commutation relations between aN? ~ X~' ~ ~ ; 

[ ~ 2"A" i ] : 0  = [  P,. ~#' ] -" [ 'l~N.f , 4.A.,~' ] : [ aN+ , '~]] (3.6a) 

+ *_ 
= O 

t ~- ~k 
-. ( . , ~ , ±  . , ;~ S,,.~' ) ~;i ~ 

(3.6b) 

(3.6c) 

(3.6d) 

In addition, it follows from (BI9) and (B28) that 

~- + + ~- 

Let us show, for example, the derivation of the commutation 

relation (3.6c) between ~ and }~K One rewrites first the equa- 

lity (B3) as o 
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( , ~ - , , , - )  At,,,-) Co,,,-) = C " ~ - ~ - ' c ' ~  ,1 C ( ~ )  Ac,~,~ + (3.8) 

+ ,4 ,~ C ( ~ )  A ~.-,.,-) . 

and substitues u :u.. Using the definition (3.5) and the fact that 

3 /~" ] = O and C(~A--~AA~'I=0 one by virtue of (BII) [ C£~) 2 

obtains 

(3.9) 

Substituting the expression (2.22a) for C(v) into (3.9) and can~elling 

from the left the factor ~ ~r-lx#) which can always be done for v 

lying out of the spectrum of u. one arrives at 
3 

~ ,~  ( ~ - . ~ . ,  ) . . . .  C ~ - , ~ "  ) . . . .  ( ~ -  ~ N - ~  ) = 
(3.10) 

. . . .  . . .  

From (3.10) it follows immediately the equ&lity 

(3.11) 

which holds for any symmetric function ~ (~i ..... ~N-Z ) since 

any symmetric function of (N-I) variables can be expressed in terms 

of the elementary symmetric polynomials which are nothing but the coef- 

ficients at the powers of v in the polynomial (V-~l)...(v-~_l). We 

shall see later that it will be enough to understand the commutation 

relation (3.6c) in the weak sense of (3.11). 

The rest of the relations (3.6) are proved in quite analogous 

way. As for the relations (3.7), their proof contains more tedious 

calculations (see analogous proof in [15J) . 

The expressions (2.22) for the operators CN(U), AN(U), DN(U) 
_ + 

in terms of P, ~÷ ) ~ ) ~are valid also in the quantum case with 

the only difference that attention must be paid to the operator 
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ordering. The operator BN(U) can be found from the identities (BI9, 

B22, B23, B26). 

Looking at the commutation relations (3.6) and the constraint 

(3.7) it is natural to represent the operators P, uj as the multiplica- 

tion operators 

c . . . .  )--- k ;~ (. k;4/,,...n2-~z_4 ) , (3.12a) 

and ~N+ ~ as the shift operators 

(eN+ ~ )  C k,' q]'~,...2 ~N-4) = ~ ( k - ~  )" %F4,.-.,/U-N-4~ (3.13a) 

(3.13b) 

acting on functions of N scalar arguments Q5 ~r~ . . . . .  ~af~-~ 
.±N 

The coefficients z are introduced in (3.13b) in order to 

simplify some subsequent calculations. The representation (3.12-3.13) 

is in fact the only (up to equivalent transformations)~ irreducible re- 

presentation of the Heisenberg algebra (3.6). 

Since the expressions (2.22) for the operators C~); ~N(P-~)jDN~,~) 
are invariant under permutations of ~lj and , one can restrict 

the representation to the functions f(k ; Vl,..., VN_ I) which are sym- 

metric in Vl,... VN_ I. The restriction corresponds precisely to the 

fact mentioned above that the commutation relations (3.6) are valid 

only for the symmetric functions of uj. One must mention also that it 

is only for the symmetric functions f(k,Vl,...,VN_l) the Lagrange's 

interpretation polynomials in (2.22) are cancelled. 

Strictly speaking, the operators uj(3.12b) and ~:--4~(3.13b) 

are not defined on the symmetrical functions since they br~eak the sym- 

metry. One can, nevertheless, use them in formal calculations provided 

the final result is symmetric. 

Up to the moment we did not study the conjugation properties of 

the operators u~ and ~ . They are extradted easily from the ob- 

vious relation 
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L (~) --~ Tr,/ I ~  ) (3.14) 

which follows immediately from the definitions (2.1) and (2.2) and the 

selfadjointness of p~ ] e~ + . The conjugation ~ acts here on the 

quantum operators only without transposition of the 2x2 matrix T. Using 

(3.14) and (2.22) one arrives after same manipulations at the relations 

"1~ ---- ~ '  (3.15a) 

N-4 

'" k#~' / l ~ ' - X / - K  (3.15b) 

Let us look for the scalar product for functions f(k ; Vl,.., 

VN_ I) in the form 
o0 

--~ (3.16) 

where the variables k, vj are assumed to be real and ~ is some 

positive function. Assuming that the functions f, g and ~ have an 

analytical continuation into %/9' < ~'~ 6 and using (3.12b) and 

(3.13b) one obtains for the measure / the recurrence relation 

N-A 

. .  

I I 

which has the solution 
N~ A 

Let us collect now the facts obtained and formulate the fol- 

lowing 
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Theorem. The two representations of the algebra defined by the genera- 

tors A(u), B(u), C(u), D(u) and the quadratic relations (3.3) which 

are given, first, by the formula (2ol) and the definition (2.2) of the 

monodromy matrix as the product of L-operators, and, second, by the 

formulas (2.22),(3.12-3.13) in the space of the functions f(k ; Vl,.., 

VN_ I) symmetricin vj with the scalar product (3.16), (3.17), are 

unitary equivalent. 

The previous reasoning is, of course, a heuristical one and 

cannot be considered as a rigorous proof. Nevertheless, we have pre- 

sented it to show how one can get a guess which can be proven after- 

wards by different tools. As for the complete and rigoKous proof of 

the Theorem, a version based on the induction in N, will be published 

in a separate paper. 

Let us attack now the problem of finding the spectrum of the 

operators tN(u,x). By virtue of the Theorem one can replace the opera- 

tors AN(U) and DN(U) in the definition (2.3) of tN(u,x) by their 
_+ 

expressions (2.22bc) in terms of uj and ~ given by (3.12b-3.13b). 
v 

Since the total momentum P commute with tN(u,x) their common eigen- 

functions f(k ; Vl,..., VN_ I) have the trivial dependence on k that 

is f(k ; v I ..... VN_ I) = ~ (k-p) ~ (v I ..... VN_ I) where p is a 

specified eigenvalue of P. Denoting the eigenvalue of tN(u,x) by the 

same letter one obtains the following eigenvalue problem 
N-4 

To reduce the equation (3.18) to the system of one-dimensional 

equations we shall use a trick due to M. Gutzwiller [ 7 ]. Note that 

tN(u,x) is a polynomial of N-th degree in u and thus can be determined 

from its values in (N-I) points, say u = v , and its asymptotics 

(2.10). Substituting u = v. into (3.18) we arrive at (N-I) identical 
3 

equations. 

@ S '/~'z ~' 4 > c ~ . .+<',~ . .  , , , - , , ,_~ > + ,t',,c,,-~.,~j c~-~,.,..,,,~,-~j= ' ' 5  > (3.1~) 
+ x ~1~- U-" ~C ~,..., ~"<"7 , '">'v,-,  ) 
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form 

Looking for the solution 

( ~  (/v'1, .--,'TJ'~--, ) -- 

~ (v I ..... VN_ I) of (3.19) in the 

and recollecting the asymptotical condition (2.10) for tN(u,x) we 

obtain, finally, the linear problem for ?(vj) 

~ /  (.'~-, ~,~) l"C(.u.) -- /L-4/Z~ N (/9(A.A.~.I.',~) ~,,~C'4/Z~u'-~C~c,,U.-.~'~) (3.21a) 

N O N-4 

(3.21b) 

which is equivalent to the multidimensional problem (3.18). 

One needs to do now several comments. 

Comment i. To obtain (3.19) it is not necessary to use the explicit 

expressions (2.22). One can also apply directly the definitions (3.5) 

of 3~  . 

Comment 2. Generally speaking there might be no one-to-one correspon- 

dance between the solutions of (3.21) and the eigenfunctions of 

tN(u,x). If the eigenvalue tN(u,x) of the problem (3.21) is M-times 

degenerate, that is there exist M linearly independent functions~(~-~) 

satisfying (3.21) with the same tN(U,X); then the corresponding eigen- 

value tN(u,x) of the problem (3.18) has the degeneracy (N+M-2) !/ 

(N-I) ! (M'l) ! that is the number of the symmetrical polynomials in 

~k of order (N-I). The cases of degeneracy seem to be however extre- 

mely rare it they exist at all. 

Comment 3. The equation (3.21) for the function ~ (~) has the same 

form as the equation for the eigenvalues of the Baxter's [ 16 ~ opera- 

tor Q(u), No connection between the wave function 7(~) and the opera- 

tor Q(u) is known yet. 

To sum up, we have shown that the problem of finding the spec- 

trum of the N-particle quasiperiodic quantum Toda chain is reduced for 

all N to a one-dimensional problem of almost the same form as that 
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obtained in [7] for N = 3 and 4. Such a reduction can be treated as a 

kind of seperation of variables. 

M. Gutzwiller has given in [7 ] a solution of the problem (3.21) 

in terms of the Hill's determinant. In the next paragraph we propose 

another approach which seems to be more suitable for the subsequent 

transition to the infinite chain. 

4. THE INFINITE QUANTUM CHAIN 

To attack the problem of finding solutions to (3.21) let us 

make once more the analogy with the Baxter's Q-operator [169. Consider, 

for example, Baxter's equation for the XXX-magnetic chain of spin 

(cf. also[173) 

- ) 

The usual waymof solving (4.1) is to substitute for Q(u) the 

polynomial ~[~) = ~[~ _~) and to put then AA=~AK . The 
K=4 

left-hand-side of (4.1) being zero, one obtains for /A K the set of 

equations M 

In case of the Toda chain the polynomial ansatz for ~(u) , howe- 

ver, does not work in (3.21) since it contradicts the asymptotic condi- 

tion for ~N(U,X) . This fact seems to be related to the absence of the 

reference (pseudovacuum) state -6~ for the Toda chain discussed in the 

paragraph I. 

We are led thus to look for the solutions of (3.21) among func- 

tions more general than polynomials, for example, among holomorphic 

functions having infinitely many zeroes. To get an idea of what kind 

of functions it may be, let us derive the asymptotic conditions for 

~(u). Substituting for ~(u) the ansatz ~(u) = 

and taking the leading orders in u at u-.~o0 , one obtains 

Taking a combination of two solutions we are led to the asymp- 

totics 
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which implies that ~ (u) has infinitely many zeroes going to the 

infinity according to the asymptotics 

(4.3) 

One can look for 

vergent) product 

~(u) roughly speaking as the infinite (di- 

( 44. -- //~,~ ) (4.4) 

where the zeroes u n have the asymptotics (4.3). Leaving the correct 

definition of the product (4.4) for the further investigation, let us 

now substitute quite formally (4.4) into (3.21a) and put u = u n. The 

result is quite similar to the equation (4.2) for the ferromagnet 

~x~ _ xx~ _ ~  (4.5) 

with the difference that the left-hand-side does not depend on u and 

the right-hand-side is now an infinite product. 

The equations for the infinite chain (N --~oO) are obtained now 

from (4.5) by a standard procedure [ 18 ]. Consider first the vacuum 

state. We assume that the zeroes of ~(u) condensate as N -~ and 

fill continuously the real axis except the interval L-~J ~ J where 

/2~ > 0 is a parameter to be determined subsequently. The basis for 

such an assumption is given by the classical limit (see Appendix C). 

Introducing the density of zeroes [ 18] 

N-~O ~ 0~ (4.6) 

and using the equation (4.5) and the asymptotic conditions (1.16) and 
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(4.3) one obtains in the usual way [ 18] the integral equation and 

the asymptotic condition for ~. (~) 

I ~÷ (~) _ ~.~ ~ ~ ~(~r) ~ ~ O ) J ~| >~ (4.7a) 

4 (4.7b) 

Since the integral equation (4.7a) is homogenious a J~(~) is the 

eigenfunction (belonging to the continuous spectrum) of the integral 

operator determined by the asymptotic condition. To avoid difficulties 

connected with non compact integral operators it is convenient to re- 

duce the problem to a Fredholm type integral equation [19~. 

To this end, let us define ~.(~) = 0 for I~l<~ 

introduce the function ~_ £4~) by the formulas 

and 

I O ) I X'" I ~ ~  (4.8) 

The equation (4.7a) and the formula (4.8) can be rewritten then as the 

integral equation on the whole real axis 

(4.9) 

where ~ is the integral operator 
co 

--00 
with the kernel 

(4.10) 

~t~ ~ 
(4.11) 

Through the constant function is the eigenfunction of the in- 
tegral Operator K+ with the eigenvalue 1 the inverse operator 

-4 

4_ K_ = -K+) 
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can be defined on the functions vanishing at infinity ( ~.(~| is by 

definition such a function). Due to the degeneracy of the operator 

I-K+, the kernel K_(u) is defined up to an additive constant. Its 

explicit form can be easily found by means of the Fourier transform. 

It reads 

- u ~  ~ ~ (4.12) 

where ~(~)--- ['(~)/~(~)is the digamma function [ 20] . In this 

paragraph we take the constant A in (4.12) to be zero. The asympto- 

tics of the kernel K_(u) then will be the following 

~_(~, : ~-- / ~ l  + ©(~-~ ~ ~ ~ (4 .1~)  

We can transform now the equation (4.9) into the equivalent 

one 

( , t -  K _ )  ?_  ÷ f .  = c (4.14) 

where the constant c which appears in the right-hand-side of (4.14) 

due to the degeneracy of (I-K+) should be determined from the asympto- 

tic condition (4.7b). 

Using the asymptotics (4.7b) and (4.13) one obtains then from 
.--% 

(4.14) that C. = ~ 3 -- A2 ~ ~ and f £ (~1 c6c~ = 5 . 

Recalling then that f+ l~) = o for ~l </~ one obtains 

f -  (~) finally the system of equations for 

w h i c h  i s  e q u i v a l e n t  t o  t h e  s y s t e m  (4 .7 )  for ~ (~) . 

(4.15b) 

It is clear from the system (4.15) how to fix the parameterj~ . 

The equation (4.15a) determines~_ (~)'~)~ ) and the normali 

zation condition (4.15b) determines j/~ as a function of i_2 

To finish the study of the vacuum state one needs to calculate 

the integrals of motion and, in particular, the energy density of the 
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ground state. 

To this end let us consider once more equation (3.21a) and using 

(4.4) rewrite it as 

A 
z z 

where 

AN I,~ ) ---- 9C-'/z C N 
D 

- x~ -- ~_ ~/9- (4.17) 

One can show that in the limit N__~ cx) the first term in 

the expression (4.16) dominates for ~2~ ~ O and the second term for 

I ~ <  O. 

Let us define the generating function for the vacuum densities 

of the integrals of motion as (cf. (1.19)) 

N-.~ N- (4.18) 

4 _~ B 

Using (4.18), (4.16) and (4.6) one obtains for the derivative 

~(~) the expression of 

i(,~.) =. 2_ " 

(4.19) 

2_ 
where (4.20) 

With the help of (4.8) one can now express 

= (4.21) 
_ /.~ - 1/- 

Expanding (4.21) in powers of u and using the expansion 

-~{~) in terms of 

_ 4 p _?_ 3 

~'(~} : ~ , ~ ~ G X~-- -t • - • (4.22) 
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which follows from (2.14) one obtains for the density of the momentum 

_/,. 
--__ O 

(due to the symmetry of the ground state) and 

6 = ~ v_ ~ ~_ c~> (4.23) 

-i 
Note that the first term u in the expansion (4.22) conforms with 

the condition (4.15b). 

The pressure ? being given, the parameters L~ and~(~Jare 

d e f i n e d  now f r o m  t h e  minimum e n t h a l p y  p r i n c i p l e  ( s e e  p a r a g r a p h  1 ) .  

Let us discuss briefly the excitations. As usually [183 to 

obtain the excited states one needs to add a finite number of zeroes 

of the function ~(u) into the lacuna ~-~] and to remove a finite 

number of zeroes from the vacuum distribution outside of [-~i Let 

the additional zeroes be in the points { ~P ~ (p for particle) and the 

missing ones in ~ ~ (h for holes). The comparison with the classical 

limit shows that the first type excitations (particles) correspond to 

the phonons and the second ones (holes) to solitons of the Toda chain. 

Omitting the standard calculations let us present the final 

+ 

result. For the relative density 

and its dual density defined by 

~+ ( ~ )  defined by 

(4.24) 

w , ~  w,.~- • I I .x,~ 2 P "  - /  

(4.25) 

one obtains the integral equation with the boundary condition deter- 

mined by the asymptotic shift ~ (see paragraph i) 



225 

I Tr'q ~'_ + (,I- ~+ ) ~-+ = o 

l 

(4.26a) 

(4.26b) 

which, being restricted on i ~I ~# gives a consistent equation for 

the smooth part of ~-t (~) • 

The dual equation is 

i t ' ,  7 ( 4-<_)m_ + 
Qo 

Being r e s t r i c t e d  on J~.| < /~  

~+ __ _ ~__ ~ ~ (4.27a) 
l 

O (4.27b) 

it provides a Fredholm type equation for 

the smooth part of ~- (~) . The normalization condition (4.27b) de- 

fines ~ as an implicit function of { ~p; ~m } 

One can show that the generating fucntion of the integrals of 

motion 

[ ~ ~c~ ~) ~ t/~ - ] 

.. _4 2,~9__ - P~-" - F_ ~-~" +.-. 
2.. 

is expressed in terms of ~---1~) like 

-C (,.~ = ~-~z- + _f~ 2,~ c~<-~ 0-_ ~-~J <#~- (4.29) 

and, :therefore, 

p = ~ ~- ~_ (-i-~ oDv i 

Ix) 

(4.30a) 

(4.30b) 

Let us make now a comparison of our results and the Sutherland's 

ones [ 5] . The equations (4.15), (4.27) can be considered as the 

usual Bethe-ansatz equations for the one-dimensional Bose-gas corres- 

ponding to the two-particle S-matrix 

(4.31) 
I- (, 4 + c  ~-I~) 
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which corresponds to the exponential potential between the particles. 

The logarithmic derivative of the S-matrix (4.31) is the kernel K- 

(4.12) and it is this kernel which has been proposed by Sutherland in 

[ 5 ] . A slight difference in the normalization with [5 ]seems to be 

due to the fact that we consider here the Toda chain under a constant 

pressure, so its volume determined by ~ may vary. Such a good cor- 

respondance with Sutherland's results is rather surprising since his 

approach is valid striclty speaking only for low densities [21] and, 

in fact, the exact equationso (3.21) for the finite Toda chain can by 

no means be represented as Bethe-ansatz-like equations with the S- 

matrix (4.31). 

5. CONCLUSION 

To conclude, I would like to stress that the success in finding 

the spectrum of the Toda chain is due to the application of a new me- 

thod consisting in constructing some special representations of the 

algebra (3.3) determined bY the R-matrix. The method itself seems to 

be quite general and to be applicable to many other models. It has 

been applied already to the Goryachev-Chaplygin top C 15] and the 

author hopes to apply it to the sine-Gordon model. 

Concerning the Toda chain, there are also many problems to be 

solved such as a rigorous proof of all the assumptions made, a proper 

investigation of the integral equations, the construction of the ther- 

modynamics, Green's functions, etc. The author hopes that progress in 

these areas will be made in the next few years. 
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APPENDIX A 

Below the complete list of the matrix elements of the relation 

(2.7) is given. Using (2.6) this can be rewritten as 

Where according £o (2.2) 

7-" T" 13 T "  

blb 2) 

N is omitted. 

(1111) : 

(1112) : 

(1211) : 

(1212) : 

(1121): 

(1122) : 

(1221) : 

(1222) : 

(2111) : 

(2112) : 

(2211) : 

(2212) : 

(2121) : 

In the relations given below the values of the indices (ala 2 

are given on the left margin. For the sake of brevity the index 

A (~), A(~) } = o (AI) 

A(.4.,.) , 5L,',,-) ~ = - ( , , . , ._~)_4 [A(~.)6d-,,-I-61~}A(-,,-,](A2) 

~. At,. . ) ,  Cu,,-) .~ . - C ~ - - ) "  [-A(,~)c,. , ,- ,  + CC'~'A("):}A3) 

- - ( , - - - , , - ) - "  [ (~J 6c , , - ) -  6c..)C(.,,-.)IA4) 

= - ( ~ - ~ - ) ~  [ 8 ~.) A(~- )  - A(,.)6~,,JJA5) 

= O (A6) 

= -(, . ,-~-) '~ [9~',,-)A(',,') - A(~).Dc~} ] ¢A7) 

= - (,.,--,,-)-" [-r~ (,,.,.) D ~ )  + D ( ~ )  8u,,.-)J (A8) 

= - C~-") -' [-C~) A(~) + Ac~)C~,,-)] ¢A9) 

= -  ( ~ -  ~ )  " [  A(~  ) D ( ~ )  - D ( ~ )  A(~) ] (AlO) 

Cd'u')~ =, 0 (All) f C ( ~ )  , 

I C ('~,.) , 



(2122) 

(2221) 

(2222) 
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, t P ( " ' ,  c ( ~ ,  I = -  c ~ - ~ ,  

-" [- P(~ 6(,,')+ 6(~} C(~,~] (AI~) 

-" [ :P(.u_.} C(',')-((,ag~-~](A~S) 

(AI6) 

APPENDIX B 

Using (3.2) one can rewrite the relation (3.3) as 

(,u. -u-) - F  (I'~ 
o~ 

- (~) T C'v') = 

-r ., T ~,~) T ~... ,:~ T °~ ( : , ~ )  

The complete list of the matrix elements of (3.3~ is given be- 

low. As in the Appendix A the values of the indices (ala2blb 2) are 

given on the left margin and the index N is omitted. 

(1111) : ( " - - " - ~ Z )  Ac~ Au,') = (.u..--~--~:.?) A(:~-~ ~ , (~ )  (B1) 

(1112) : (x~.-'~r-,L,~) ,~, (,u.) 6(,~r) = (._x,._v-) 5(.,v-) A(.u O -~',~, l(l('v ") /'~(aXB2) 

(1211) :(u._.,,-) A(~) C(.,,,-) -.,:'~ C(~) A(~J =(,~.-v-P, 2 )C,"#~B3) 

(1212) 

(1121) 

: (x,-v-) A(~.c) b(,.u-)-,6,~ C(.,u.) e,(.v-) = ~u.-'u-') D(~r) A(.uJ (B4) 
- ~'~ C(-u-) e , (~ )  

:(,....o-_,:~) /3('-,.) A('~'~ = 0-, - -" ' )  Ac~'~ Sc~-~_:ge~-)A~s5 ) 

(1122) :6(.,,,'-) (5('uO = ~(-v-) /'~(.u.) (B6) 

(1221) 

(1222) 

- C ~ D (~'.) A(,~.) 

: (~--o.) 6c~) De.,-)-£~ 9(..,) Bc~-)= (~-~-,~)D('~)B(~,XBB) 

(2111) 

(2112) 

(2211) 

- ~ ',) A(' , , - )  P(~ . ,~  



(2212) 

(2121) 

(2122) 

(2221) 

(2222) 
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. (~._~_k,~) C(~-) D{,,r~= ¢~--~) P~') ~(~) -~7 £d~')D~-~) (Bi2) 

: ( [ ~ _ , v - - ~ )  DC~)C('~) =Cu., -1,,') C(~')D(~.~) ~ i~)  / ) ( 'v ' ;C(,~)  (B15) 

:[X~-~--L~)) Dc~)9(~ ' )= C.~,---v--L";/) Pc~r) Dr,...,..,.., (B16) 

In the main text of the paper some formulas are used connected 

with notion of the quantum determinant [ 8 ] . Using the explicit ex- 

pression (2.1) for the L-operator one can verify that the following 

relation holds 

o-,. L(,.~} d-~ L c~- -~ '  7 ) = 

as well as the relation 

L E ~  o-~. L ( ~ + ~ )  o-~ = 

where 0 -- ~" 

Cry. = ( ~. 0 

Below the matrix elements of 

d 
(BI7) 

(BI8) 

(BI7) are written down 

= 4 

= 0 

= O 

= 4 

Dry) A(~-c 7)_ 8~) ((~-c~) 

and of (BI8) 

(BI9) 

(B20) 

(B21) 

(B22) 

(B23) 

(B24) 

(B25) 
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(B26) 

APPENDIX C 

Here we consider the classical limits of the equations obtained 

zn the paragraph 4. 

Let us consider the vacuum equations. The kernel T%+[~) has 

the followzng expansion as ~ --> O 

TI- x~ z 

The right-hand-side of (Cl) should be understood in the sense of dis- 

tributions, 4__ being the standard renormalization of A* -z [22] 
~z 

Oo oo 

,i.~ ~. o - o o  

Due to (CI) the vacuum equation (4.7) becomes in the classical 

limit (cf. the analogous treatment of the non linear SchrSdinger equa- 

tion in 23 ) 

n z  

t~+ C,v'~ ~ = 0 ~ l U. i  >jU. 
(~_~) • (C2a) 

Z J (C2b) 

The constant p being fixed it has the unique solution 

L-J : (C3a) 

(C3b) 

In order to perform the limit ~ --~ O in the equation (4.15) it 

is convenient to use another normalization of the kernel K- - Let us 

choose the constant a in (4.12) to b e ~ / ~ .  Using the new kernel 

K_ the equation (4.15) can be rewritten as 
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Using the asymptotics of the kernel K 

-- -- 

o n e  obtains in the classical limit 

J/ , : L , , . _  _- .t 
The unique solution to the equations (C5) is 

a J 
(C4a) 

(C4b) 

! (C5a) 

(C5b) 

I , ---- (C6a) 

4 
- ~/Z 

"IT" 

The expressions (4.21) for ~;(~) and (4.23) for the energy 

do not change in the classical limit. One obtains 

i , 

which coincides with the results of the paragraph i. 

The classical limit in the equations (4.26-27) for the excited 

states can be performed in the same manner and leads to the well known 

classical results (cf.[5 ]). 
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ON SOLUBLE CASES OF STAGGERED ICE-RULE ON A SQUARE LATTICE 

T.T. Truong 
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W. Germany 

Abstract. We discuss a so lub i l i ty  condition for staggered vertex systems with 

ice-rule and i ts  impacts on the Ashkin-Teller, Potts and layered Potts models. 

§1. IntrOduction 

Contemporary equilibrium s ta t is t ica l  mechanics deals with a wide variety of 

problems pertaining to c r i t i ca l  behavior of physical systems and their  phase struc- 

ture and numerous are the methods available to achieve these goals. However, simp- 

le models made to describe real systems appear always attractive for they provide, 

i f  successful, a clear cut understanding of the phenomenon. The Ising model /1/ 

and i ts  solution is certainly the most outstanding example of e f fo r t  in this di- 

rection. Generalisations of the Ising model have been subsequently proposed by 

Ashkin-Teller /2/ and R.B. Potts /3/ with models carrying their respective names, 

but these models have fai led to be soluble up to now. But in the meantime progress 

in modeling ferroelectr ic systems in two dimensions had been successful and their 

complete solution was obtained by E.H. Lieb /4/ and later generalised by R.J. 

Baxter /5/ .  I t  is therefore not surprising to witness efforts by many workers to 

convert the Ashkin-Teller and Potts models to vertex models.But one obtains their 

staggered versions/19/ whereby two systems of vertices coexist on interpenetrating 

sublattices of the main la t t ice.  Unfortunately, the problem of staggered vertex 

models s t i l l  represents a considerable challenge to the theoretician for i t  has 

eluded complete resolution up to now. 

In what follows we propose to reach a part ial  solution to the problem . The 

ear l iest  class of solutions for staggered ice-rule is of Pfaffian type and was dis- 

covered by F.Y. Wu and collaborators /6/ who also extended their findings to other 

lat t ices /7/ and considered the staggering of several lat t ices /8/. Recently re- 

considering the most general ferroelectr ic model on a square la t t i ce  he solved in 

1971 /9/ Baxter discovered that a special staggered system is hidden in the class 

of soluble inhomogeneous systems, which he identi f ied to the c r i t i ca l  anti ferro- 

magnetic q-state Potts model /10/. This discovery is an important landmark for i t  

sweeps away the bel ief  that staggered vertex models do not seem to admit other so- 

lution than Pfafians and consequently raises the question when does a staggered ver- 
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tex system is integrable by a Bethe-ansatz type of solution. 

To this end we shall elaborate on some ideas of R.Z. Bariev regarding the 

treatment of vertex systems /11/. More precisely, restr ic t ing ourselves f i r s t  to 

the simple homogeneous zero-f ield six-vertex model we shall show that Bariev's dia- 

gonal-to-diagonal transfer matrix admits eigenfunctions of the Bethe-ansatz type 

and the part i t ion function has the usual product form. Now staggered vertex systems 

appear in this "diagonal representation" of the la t t ice  as described by the product 

of two-diagonal-to-diagonal transfer matrices. Hence i f  these matrices, under ce~ 

tain restr ict ions, admit the same set of Bethe-ansatz wave functions as eigenstates 

we would have obtained thus soluble cases of staggered vertex systems. These solu- 

b i l i t y  conditions yield in turn so lub i l i ty  lines for the Ashkin-Teller and Potts 

models. Conversely these spin models do have themselves special soluble cases, 

which w i l l  reappear on the staggered vertex systems as new sets of soluble points. 

Some of the so lub i l i t y  lines but not all are in fact c r i t i ca l  lines. Finally we 

sketch some gneralisations of this construction for other systems. 

§2. Methodology for the ice-rule on a square la t t ice  

2.1 Conventions. We consider a square la t t ice  of sites labelled by ( I ,J)  with 

periodic boundary conditions, i .e.  site (I+N,J+M) is ident i f ied to site ( I ,J)  where 

M and N are the numbers of sites on the horizontal and vert ical directions. Pairs 

of sites are connected by vertical and inclined edges as shown in f ig .  1. The four 

edges round a site form a vertex, each 

edge carries an "arrow" variable. Let us 

agree that a "down-arrow" by the 

value -1 of or(resp.~).  The so-called 

"ice-rule" which originates fro~ the 

relat ive position of a hydrogen atom on 

an edge in a planar ice molecule model 

is then representated by the constraint: 

or+~ =~ '  + ~ ' .  See figure 2. Let C be 

a configuration of edge variables (~,~) 

obeying the ice-rule on the 

/ 
/ 
/ 

/ /  
/ /  
/ /  

/ / 
/ /  

Figure 1 

Figure 2: Ice-rule ~+T=~'+~', the 6 vertex configurations and their  weights. 
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whole la t t i ce  w i t h ~ , j  =~ l~+ l ,~ j=~ i . i J . l~hen  the par t i t ion  function is the sum 

over a l l  such configurations of the i r  s ta t i s t i ca l  weights: 

tc~ ~.~ 

2.2. Diagonal-to-diagonal transfer matrix 

We take a slice of the lat t ice of figure 1 made up of a row of vertices as 

shown in figure 3, and define a 4 N x 4 N 

matrix by its matrix element: 
... o3 %.... N 

T....~,~j, .. =' IF ~5 
J =1 

where (Tj + ~ j  = ~ j ÷ ~ ( J = l  . . . .  N) and ~r  

is the weight of the vertex J with the J 

configuration o'j, ~ j ,  o' j  and~ j .  Then we have 

~M.  = Tr ( T . ) "  
as in the usual row-to-row approach /12/. 

Permuting in and out labels of T N, namely 

(O'j, ~ j )  4.4. ((l j, "l~j) we obtain the transpose 

of T N which is represented in f igure 4. 

Figure 3. The matrix T N 

2/C . . . .  

Figure 4. Transpose of TN:T N 

Figure 5 shows the simple structure of 

the product T~TN, and how the inverse 

of T N can be computed from a local 

product of vertex operators. I t  is 

thus straightforward to find the in- 

verse relations of the parti t ion 

function /13/. 

Figure 5. The product T~T N. 

§3. Triangle relations and eigenvectors of transfer matrices 

3.1. Parametrization. As noted earl ier by E. Lieb, the number of down-arrows (or 

negative spin on an edge; i .e.  either ~= -1 or ~= -1( remains constant in a row. 

One treats them as "particles" and constructs the eigenstates of T N as Bethe-ansatz 

wave functions. This has been done b~ R.Z. Bariev, as well as by'E.H. Lieb earl ier 

in the row-to-row formulation. We shall by- pass this conventional method and refer 

the reader to references /11/ and /12/. Instead we would l ike to recall that the 

integrabi l i ty of T N (or i ts row-to-row counterpart) hinges on a canonical parametri 

zation discovered by R.J. Baxter in 1970 /5/ according to which the zero-field 

6-vertex model weights are expressed by trigonometric/hyperbolic functions: 



237 

oJ 4 . ~ =  ~ = ~ i n ( ~ - e )  

r3.1.1) oJ3= ~ :  b : sine 

c,.) s , ~ i e c  , ~ G =  ~ - ~ e c  ~ c = s i n ~ .  

E l i m i n a t i n g  g, we obtain the Lieb invar ian t~=  (a 2 + b 2 - c 2) (2ab) - I  = - cos ~. 

The presence of unimodular factory i n ~ 5  and e J6 is immaterial to the pa r t i t i on  

function since i t  depends only on the product~5~6 = c2" They do, however, add an 

extra symmetry to the problem in the sense that O, the "spectral"  parameter, as 

cal led by L.D. Faddeev and his school / !4 /  can be now defined modulo X . On the 

other hand 0 labels commuting row-to-row transfer matrices as i t  is well known /5/ .  

This canonical parametrization real izes,  in a sense, a uniformizat ion of the 

fol lowing algebraic problem. Consider the simplest non- t r i v ia l  l a t t i c e  made up of 

three vert ices, intersect ions of three st ra ight  l ines.  When we sh i f t  any l ine  

para l le l  to i t s e l f  we obtain a new configurat ion geometrical ly inequivalent as 

shown in f igure 6. 

G. 

c 

Figure 6: Horizontal sh i f t  

of ver t i ca l  l ine  and spin 

conf igurat ion on edges. 

Given any spin-configurat ion on the outer edges of the two diagrams, i . e .  

~I ..... ~6' i f  the to ta l  s ta t i s t i ca l  weight of the l e f t  diagram were to be equal to 

the to ta l  s t a t i s t i ca l  weight of the r ight  diagram whenever the inner spins~12c2,~ 3 

are chosen according to the ice-ru le,  then the vert ices A,B,C would have the same 

Lieb invar iant  and the i r  spectral parameters f u l f i l l  the re la t ion :  

(3.1.2) ~A: a~= ~C: ~ GC : eA ÷ e8 (mode) 

Baxter has proposed to iden t i f y  e f fec t i ve l y  OA, OB, gC to the geometric s t ra ight  

l ine angles of the respective vert ices with an appropriate North pole convention at 

vertices A, B and C. Equation (3.1.2) simply expresses that 0 C is the outer angle 

of an euclidean t r iang le  is the sum of the two opposite inner angles. The angular 

re la t ion  has appeared ea r l i e r  in the theory of two-dimensional fac tor izab le ,  

e las t ic  S-matrices /15/: 
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e~ 

Figure 7: Angular relation 

The immediate consequence is the following. Given a set of N lines intersecting 

mutually only pairwise, i f  one chooses on each edge a spin variable so that round 

a vertex the ice-rule is f u l f i l l ed ,  provided that each vertex has the same Lieb 

invariant and i ts angle O is chosen to agree with the previous "triangle rule", 

then one is free to shif t  any line parallel to i t se l f  without changing the total 

stat ist ical weight of the system, once the set of outer spins is fixed. /16/. We 

next show that this property wi l l  basically generate more or less graphically 

Bethe ansatz eigenfunctions of T N. 

3.2. First application of the triangle relations 

As pointed out ear l ier the object on which one should focus our attention is 

a "down-arrow" or "particle" described by a spin: -1 on an edge. I t  traces a con- 

tintuous path through the lat t ice.  The simplest extension of the triangle diagram 

of figure 6 is the addition of parallel vertical lines (see figure 8). We should 

understand that each side of figure 8 represents a sum over inner spins ~ and ~' 

for any given outer spin configurations: (c,¢';9,~';%~'): 

= 

Figure 8: 

Let us specialize to the following outer spin configuration of figure 9 

' = -1 and every other spin equal to +1. where %=%'= ~ : ~ j  
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Figure 9: Paths of down-arrows are in heavy lines. 

On each "almost" horizontal l ine, a "particle" comes from far r ight and appears 

on some vertical edge, say at vertex I. This is, as far as vertical edges are con- 

cerned, a creation of a particle on the I th vertical edge. The stat is t ica l  weight 

of such process is the product of the weights along this l ine from the f i r s t  to the 
M I 

last vertex, i t  is equal to ~4)c[o~(e,)/b(~where__ 01is the angular parameter of 

the "almost" horizontal l ine. Thus the probabil ity amplitude of finding a down- 

arrow at I is basically a plane wave with wave vector k I defined by CL~= a(~(~)-- . 

What figure 9 te l ls  us is two-fold. First the creation of two particles is 

commutative, since we can pull freely one l ine through the other. Second by com- 

puting the total s tat is t ica l  weight of two-down arrows appearing on the lowest row 

of vertical edges one finds that the probabil ity amplitude for the existence of 

particles is precisely of Bethe-ansatz type (recall that one should resum and re- 

arrange the terms so that particles appear in the sector I '  < J since we have in- 

distinguishable objects here.): 

o=L~p(~.~,J){~ • °' °" ~- e , x p ( ~ : . ~ : ~ {  °'÷ ~' ~± } 

where a(Oj) = aj and b(Oj) = bj, also exp ik j  = aj/bj as before. I t  is now straight 

forward to imagine the possibi l i ty  of shif t ing mutally a set of "almost" horizontal 

lines defined by angles g I . . . . . .  g n . Special configurations such that far-r ight  spins 

~I =~2 = "'" ~n = - I  reemerging on the lowest row (spine i )  have stat is t ical  

weights which yield in fact a Bethe-ansatz wave function for n-particle system on 

the lowest row of vertical edges. 

This "graphical" construction of Bethe ansatz wave functions is extendable to 

the case of non parallel "vert ical" l ines. Each "almost" horizontal l ine is now 

labelled by a set of angles O.Ot. O~ I)" subjected to the conditions j j . "  

e ,  - ej . e~ - e~ = = e~ ' ) .  ~A ( ' l  ( ~ o a  ~ 

This result has been obtained by Baxter /5/ long ago. 

3.3. Second application of the tr iangle equations 

We f i r s t  deform s l igh t ly  the tr iangle in figure 6 and add this time N vertices 

horizontally. The result is pictured in figure 10. 
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• if.e,/e. 
e 

/ I 

Figure 10: 

Comparing with figure 3 we see that this is the vertical shif t  of a horizontal 

l ine of angular parameter 01 and 0 + 01 through the diagonal-to-diagonal matrix 

T N = TN(O,N). The horizontal l ine may be thought of a device to generated on this 

upper row of edges a down-arrow which wi l l  eventually propagate downward by per- 

forming a hopping to the le f t  or staying on the same spot. Again by computing the 

stat ist ical weight along the horizontal l ine one finds that the momentum of the 

plane wave of the down arrow is given by 

&(e÷&) b(e~) 
And by computing the stat ist ical weight on both sides of figure 10, one sees that 

the plane wave exp ikiJ is an eigenstate of TN(O,N) with the eigenvalue ]~1=a(gl)/ 

b(gl). For more details see reference /17/. 

A two-particle system can be generated by two "almost" horizontal lines. I t  is 

clear that, as explained in the previous paragraph, a proper choice of the angular 

parameters g along the horizontal lines wi l l  ensure that they commute with each 

other, and yield the Bethe-ansatz wave function for two particles, see figure 11. 

-/~eL.._ """ ,0, 

Figure 11 

This construction may be extended to any number of horizontal lines. Thus we 

can directly, by calculating a global stat ist ical weight, generate the Bethe-ansatz 

wave function of a system of n-down arrows susceptible of being an eigenstate of T N. 

The corresponding eigenvalue is just equal to the product of single particle eigen- 

values of equation (3.3.1). Periodic boundary conditions on the particle space va- 

riables determine the choice of the 0 i which is reduced to the calculation of a den- 

sity of 0 in the thermodynamic l imi t  through an integral equation as i t  is usually 

the case. 
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We have sought here to present the highlights and main features of the method 
of R.Z. Bariev without tangling ourselves in the technical details which are availa- 
ble at length in references /11/ /17/ /18/. The crux of the matter resides basically 

in the triangle relations which once appropriately extended provide the correct con- 

struction of the Bethe-ansatz wave functions of the diagonal-to-diagonal transfer 

matrix, i ts eigenvalues and through the resolution of an integral equation governing 

the distribution of the eigenvalues in the thermodynamic l imi t  the ultimate computa- 

tion of the part i t ion function. The method is attractive due to i ts simplicity which 

is best appreciated from the graphical interpretation and seems thereby to have an 

edge over the usual row-to-row approach. 

§4. Staggered ice-rule on square lat t ice.  

4.1. Simple two-fold staggering. 

Two square interpenetrating sublattlces A and B (of continuous and dotted 

lines) from our lat t ice as shown by figure 12, with the periodic boundary conditions 

described in paragraph 2.1. Geometrically there exist four types of vertices; two 

resulting from intersections of lines of the 

same type and two from intersections of lines iI / 
I /  

of different types. We shall assume complete i # 
I /  

symmetry between the two types of lines and ¢ , j l  
shall consider vertices which have the same ~ / /  

V Lieb invariant or equivalently the same ~. 

Hence we have the following distribution of i / I /  
I# spectral parameters in the vertices, see figure 13 

I / I / 
I i 1  I 11 

'IV I I 
I / 

g 

/ I s I ,I • # "  ,¢" [eV" Lo, 
I '~  I jr / :  ,-F 

" i / i / / 

Figure 13 

The part i t ion function can be calculated 

from a transfer matrix which is the product 

of two diagonal-to-diagonal transfer matrices 

TN(g) and TN(g') of figure 14. Note that the 

parti t ion function does not depend on the 

order with which the product of the matrices 

is carried out. This is an intr insic symmetry 

of staggered vertex systems and is in fact 

a duality symmetry for an equivalent spin 

Figure 12. 

I • I • I , ,  I / , , '  I / ,  ,' I /  
,,f' "-,,F " X  TCo), /, /, 

# i I I # i I I / i I I 
# i /  I # i / I t I / I 

I # I / ! / 
/ / / 

/ / / 

/ i /  / /  ~ /  / /  ! /  / 

Figure 14. 
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model: Ashkin-teller or Potts model. 

I t  is worthwhile mentioning that the inverse relation for the part i t ion func- 

tion of a staggered vertex system is quite transparent here, the so-called auto- 

morphy factor is just the product of automorphy factors of the separate systems 

(0,~) and (0',~) I13/. 

4.2. Integrabi l i ty  condition 

In section 3 we have shown that so long as we can sh i f t  ver t ical ly  a l ine 

through a line of vertex defining a matrix TN(O). We would be able to construct 

Bethe-ansatz states that are eigenvectors of TN(@). The problem is now to determine 

under which condition(s) would these Bethe-ansatz states be also eigenvectors of 

TN(O'). Put i t  d i f ferent ly,  when could we sh i f t  a horizontal l ine (either continu- 

ous l ine or dotted line) through the second row of vertices defining TN(O')? 

In order to be able to go through the f i r s t  row we should choose the following 

angular parameters for the horizontal l ine, see figure 15. 

X 111 #l 
" v : i / I  ,, / .4' . . . .  . , ,  

- B . ~ . - ~  .'3 ' ,  
. . . . . . . . . .  / - - / ~ 2 i ' ' - 7 -  

X ,!" .... X ,>, 

i'" J /  

#' i /  I 

b' V 
. . . .  #I 

-,-,:--i. - / -  - l  - 

Figure 15: Shift of a l ine (continuous or dotted) through vertices (0,~). 

Now we require that the lines cross the second row of vertices (figure 16). 

I ,'I / ke'%C,~÷e;Xo, 

Y,/. 
I I  II . l |  /I /1" 

# # 

I tl 
I ,i 
I ! 
I / / 

Figure 16: Shift of a l ine (continuous or dotted) through vertices (8',~). 
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The angles in the two triangles of figure 16 must f u l f i l l  then the relations 

e ÷ e4 = e'+ el (mo~.~) 
(4.2.1) 

e + e~ = 0"+ e~ (moa.~) 

01 and O~ are parameters of horizontal lines, they are eliminated from equations 

(4.2.1) and yield a relation between 0 and O, namely: 

(4.2.2) e '  = 8 • ~ (~nod.~) 

The unconvinced reader can use the weights of equations (3.1.1) to see that 

the triangle equations can only be verified i f  we have (4.2.1). I f  we choose 

= 0 we reobtained the non staggered vertex system. But forl~l= i we recover the 

case found by Baxter /10/. Consequently we are led to choose also for the horizon- 

tale l ine O~ = g i ± ~ 2  (mode). These results would be best understood for an 

"isotropic" model where g' = N-O. This corresponds to the exchange of weights a 

and b when passing from one sublattice labelled by (O,p) to the other labelled by 

(O',p). In figure 17, we have plotted the solubi l i ty  lines on a diagram (a/c, b/c) 

/ 

Figure 17. 

The case ~= 0 is represented by the 

(4.2.3) 

% 

<\\ 
\ 

\ 

l lne a = b whereasl~=1 implies the curve 

- b ' )  
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This curve is symmetric with respect to the exchange a-,,- b even in a, and 

b and of fourth order. The locus of ~=  constant are second order curves. 

(4.2.4) a : z + b z . o  z = 2A,' ,b 

they pass al l  through two fixed points (a/c = 1, b/c = O) and (a/c = O, b/c = i ) .  

Degenerate cases are 141= 1 represented by a/c = $ b/c± 1. Finally the free 

fermion conditions A= 0 implies the unit circle. 

4.3. Application to the q-state Potts model 

The mapping of the q-state Potts model to a staggered six -vertex model has 

been done by H.N.V. Temperley and E.H. Lieb as well as by R.J. Baxter, S.B. Kelland 

and F.Y. Wu /19/. Let us f i r s t  consider an isotropic Potts model on a square lat t ice 

with interaction parameter K between Potts-spins. The connection to the 6-vertex 

weights a,b,c is given by the relations 

(4.3.5) b/a = g 

The f i r s t  s o l u b l e  l i n e  

K 
e ~ 

A= ---~ 
2 

a -- b corresponds to the se l f - dua l  l i n e :  

whereas the I~I= 1 l ine has now the equation 

cK =-I + @~r~-~_q 

found by Baxter /10/ and physical only for q < 4. I t  is the cr i t ica l  curve for 

the antiferromagnetic Potts model. In figure 17 an antiferromagnetic Potts model 

(K < O) implies b/a < O, the intersection of the curves of equations (4.2.4) are 

only real i f  q < 4 becauseAis negative and the intersections are in the area 

b/a < O. 

Now the Potts model with q = 1,2 is soluble, in fact these cases are the 

one-component Potts t r i v i a l l y  solved and the Ising model. Looking back at 

figure 17, we can say that the lines A = I/2, 1-~-~are also soluble lines for 

our staggered vertex model. 

Finally let us quote the result for the anisotropic Potts model where the 

identif ication to the 6-vertex is made through: 

~K-4 si~ e ~. K'- 4 .=~.. CF.- e') 
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with ~= -~rq/2 and Q'= 0 ± ~x/2 .  Eliminating O we have a re la t ion  

between the coupling constant K and K': 

(4.3.6a) ~ = 0 (~.K-4)(e~K'-I) = 

(4.3.6b) I~ , I .  ~ (e%,)(~m%4) - ~-~ 

Both curves may be obtained also by the dual and automorphic properties of 

the partition function of the Potts model /20/. 

4.4. Application to the Ashkin-Teller model 

This model has been shown to be equivalent to two sets of Ising spins {Si~ 

and {T i )  on a site of a square lattice interacting with a statistical weight 

for neighboring pairs ( i , j )  

w~j = ~xp{KS~Sj ÷ K'T;Tj ÷ K'S~S4T~Tj~ 

A par t ia l  dua l i ty  transformation on the Tj spin shows that the model is map- 

ped into a staggered 8-vertex model /21/. However for  K = K "  a subsequent weak- 

graph transformation on the staggered 8-vertex model reduces i t  to a staggered 

6-vertex model such that the weights are d is t r ibuted as fol lows (see f igure 14)/22/: 

~4 : W~  : ~ W 3 : ~ = ~ C ~ 

Mat~(x TN(e) sinkeR i zK" ¢:~h %K 

Vertices belonging to TN(0 ) and TN(O') have the same Lieb invariant: 

~. = 

sigh 2.K 

We plot now the solubility curves in the plane ~ " :  exp(-4k),~= exp(-2k-2k") 

see figure 18. 
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// 

, 3 

t 

i j S  'I 

i 

Figure 18: The symmetric Ashkin-Teller diagram. 

The non staggering case ~ = 0 of equation (4.2.2) is simply the self-dual 

curve: 

( 4 . 4 . 7 a )  ~ = b or  ~-2K"= s i n h 2 K  or  2 ~  + ~"  - 4  

The other case with I~I = I is the curve of equation, also invariant under 

duality: 

(4.4.7.b) (==- , . ) ' .  ¢.(=,÷b,) o,. [( , -=');~,. , ' ] ' .c, .~, '~=[(,-~, '~:~ "] 

Upon comparison with figure 17, we could now add to these solubi l i ty  curves 

the curves of equation deduced indirectly from the Potts model: 

A = - ~ , - 4 / ~  with a = 
CA] u 

4 - -  {/)ll 

The free fermion condition is always A= 0 corresponding to K" = O. And there 

exists two Ising cases for K"-~:~ or K = O, for which our staggered six-vertex 

model takes precisely the form obtained by F.Y. Wu to represent the Ising model /6/ 
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In figure 14, the so lub i l i ty  l ine of equation (4.7.b) is beyond the duality 

envelop defined by the equation: 

~0 q = 2o~ - I 

We have also sketched the c r i t i ca l  lines in dotted lines which are not known 

exactly /23/. We do not wish here to elaborate on them. 

4.5. Generalisation to p-fold staggering on square lat t ice 

The previous discussion has led us to consider the in tegrabi l i ty  conditions 

for the ice-rule on a square lat t ice from a purely geometric point of view, which 

may be applied to the following generalisation. We go back to the square lat t ice 

of figure 1. We allow each l ine (vertical or inclined) to carry a "color" labelled 

by j = 1 . . . . .  p. Let Oij (resp. ~ i j )  be the angle between a vertical (resp. hori- 

zontal) l ine of color i and an inclined l ine of color j .  We construct our p-fold 

staggered lat t ice of six-vertex as follows. We take the f i r s t  row, which defines 

the f i r s t  diagonal-to-diagonal transfer matrix T~ 1)" as made up of vertices, inter-  

sections of lines bearing the same color so that the angles awe 011,022 . . . .  ,gpp 

and they are ordered horizontally in periodic pattern. The next row defining the 

diagonal-to-diagonal transfermatrix T~ 2)" is associated with the periodic pattern 

of angles: 012,023 . . . .  , Op_l,p, 1. We construct in this way successively p trans- 

fer matrices, whose product is the transfer matrix of the staggered la t t ice with 

p-sublattices. Again we shall assume permutational symmetry among the p-sublattices 

we end up only with p independent angles: 

T'"., e,, . e , .  - e .  . . . . .  e . , , . , .  . e 

M:brix -M T(.' ¢ ,  - (~  - (~q - . . . .  Op_,p- (~p4 " (~' 

4 Z ~ i i 

= - _ . _  = e ( r - ~ - )  

. . j ,  e ~ - ' )  

A horizontal l ine carrying a color i w i l l  intersect an inclined l ine of 

color j with an angle~i j .  The assumption of color permutational symmetry forces 

the ~ i j  to be subjected to the same restrict ions as for Oij, i .e :  

CX, 4 = O~z.,, = 0 (3~  =- _ . _ .  OCp. I p . ,  = OCpp " o~. 
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. . . .  ( X "  oliz = %z = % *  = ~ - , e ;  °% 4 =  

t i I i 

O~4p = oe~1 = o~ = .... C~p~l~.~= c~pp.4=a (p-') 

We use now the angular relation in a triangle (equation (3,1,2)) to deter- 

mine the angles between vertical and horizontal lines along the first row of 

vertices. However, this determination can only be consistent with the angular 

relation in triangles belonging to the (p-l) rows below if we have 

e ÷ a = e '  + (x' = e" + o ( ~ , =  . . . . .  ecP-4)+ (x(P'O 

0 + o(' = O' ÷ 0¢ )=  E)" +c~ ~ . . . . . .  oce'~)* ¢( 

÷ ~ ( P " )  + o~tP "~) 0 =(P'~ O' + oc(P-~ 0"+ (x . . . . . .  

e * oc ce'') O' * a = 0" + ~' . . . . . .  erp-,}+ ~(r-2) 

We eliminate a l l  the horizontal l ine paramete rs~ ,~ ' ,  . . . .  ~ (p- l )  to obtain 

constraints on 0,0" . . . .  0 (p - l ) .  They are of the types: 

p e = pe' = . . . .  pe (P-I) (moa.~) 

2e(J) = @d+4) + eCJ-1) (mod.~) 

~or j = O,i .... ,p-4 

Hence we have the solutions: 

e (i~ , O ± £cJ~T"p (Tnod.~) 

wt~h Zg(j) = £(j,~) + £cj-41 (rood. p) 

Figure 19 i l l us t ra tes  our conventions for p = 4. 
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;;!0,,.0t,./:. " / I i '  e" "~ / / 
e / . 
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Figure 19: 4-fold staggered vertex system 

Examples: For p=3 0 ' :  Oi~.~ and 0"= 0 ±#]'~ 

~'= .~" = 0 ('rood..',} 0 : 0':  E)" No staggering 

+ = o (mo4~) 

and (~"- 0+21 . ~ i : - ~ . 4 , z  (rood.3} one can take 0 ' = 0 ~  

p=$  , B' = 0 ~:~'~ , 8" : 0 _ + ]"~r#_ and 0")= B +-£'~11 (rood.x) 

, 2 e ' :  £" (mod.~-) , 2e',, ~"C, nod',-') 

For 

the constraints on .~', ]~'~ and ~'~ are: 

~g" = £'+ £~ (~,oa.4.) , 0 . £'+,£" (mod.~) 

There are many possible choices, namely, 

i f  ~":0 then ~ ' : ~ ' . 0  (non-staggered) or ~' : ~ ' 2 .  

i f  ~"=2. then ~ ' : 4 ,  ~m.a or .~' :3 , ~ ) -4  
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A non-tr iv ial  particular solution for general p is the choice~(J) = ( j - l )  

for which we have the addition of ~/p to each successive 0 ( j ) ,  j = 0 . . . . .  p-1 

e '  = g ÷ ~/p , e "  = e + ~x /p  , - - . -  , 8 ( P - ' 1 =  e . ( p - 4 ) ~ / p  

The free energy per vertex of such a system, in the thermodynamic l i m i t ,  

is equal to: 

(4.5.1) r, ce, ) : • ; ( e .  + . . . .  + 

where f(g,~) is the free energy per vertex of the square l a t t i ce  s ix-vertex model 

with parameter 0 and N, already known /16/. 

Equation (4.5.1) has a l im i t  for p--~oo: 

ce+~ 
(4.5.2) ~ Fp(B,~) = \ ~ (x ,~ )  dx = F(G,/~,) 

p-p ~e 

For example in the disorder state I Z~J < 1 with g < 2~ after performing the x-inte- 

grations we obtain a new expression for F(O,N) which seems to exhibit a different 

singulari ty structure from that of f(O,~) but a detailed study of (4.5.3) is 

beyond the scope of this paper 

(4.5.3) F(9,#) = Con~. ÷ J sm~Cze~)x si~kc~-~x a~ 
-oo 2 x  z cosh/.~x 

To close this section we observe that for p = 2m we have an equivalence with 

an m-fold layered q-state Potts model (alternatively symmetric Ashkin-Teller model) 

for which soluble cases exist. However, as already observed in reference /10/ case 

must be taken in expressing the related free energy per site since periodic boundary 

conditions for vertices do not correspond to periodic boundary conditions for 

spin-systems. 

§5. Conclusions 

That f ie ld  theories are direct ly connected with stat is t ical  mechanics is long 

ago known due to the work of J. Schwinger and then later systematized by K. Oster- 

walder and R. Schrader. The class of non-linear f ie ld  theories which are integrable 

has considerably grown since the connection between the 8-vertex model solved by 

R.J. Baxter and a lat t ice version of the massive Thirring model has been established 

by A. Luther and M. LUscher /24/. Recently we have also shown that staggered vertex 

systems have given rise to non-linear f ie ld theory models involving internal degrees 

of freedom which are precisely implemented by the sublattices of a staggered 

lat t ice /25/. 
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In the context of an integrable theory we could escape the ardous task of 

solving non-linear equations of motion and instead deal with the linear problem 

obtained by the inverse transform. Here we have shown that, indirectly, the 

associated linear problem is simply a uniformisation of the vertex system which 

leads further to a geometrisation of the solution, as already proposed by Baxter 

in 1978. The amusing thing is at least up to now only euclidean geometry is needed 

I t  is quite often believed that non-integrable systems become integrable at 

c r i t i ca l i t y  /26/. This is true for example for the Potts model in both ferro and 

antiferromagnetic regimes. But conversely solubi l i ty  needs not imply always a 

cr i t ica l  point as been shown recently /27/. Moreover, there is no cri terion which 

could insure that a cr i t ica l  l ine is also a solubi l i ty  l ine, this is the case of 

the presumed Ising-like cr i t ica l  lines in the symmetric Ashkin-Teller model. 

To complete this study we have gathered in the appendix a review of the 

Bariev's model as well as some academic examples of the technique which include 

a generalization to multicomponent ice-rule /28/ on a staggered lat t ice,  as well 

as ice-rule associated to "Solid-on-Solid" (S.O.S.) model /29/ now on a staggered 

latt ices. Finally we make some comments related to models parametrized by e l l i p t i c  

functions. 
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APPENDIX . 

A complete survey of al l  soluble models on staggered latt ices would be d i f f i -  

cult to set up. In the text we have concentrated on models of vertex admitting al- 

ways the same Lieb's invariant. I t  was R. Z. Bariev who f i r s t  found that there ex- 

i ts  a case for which 4 may be chosen unequal on different sublattices. We wi l l  

review this case which is quite original and go on to other types of vertices. 
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I. The Bariev Model /11/. Here we show that the previous "geometrical" construc- 

tion of Bethe-ansatz wave function s t i l l  applies. We shall use the notations of 

§4.1 whereby the weights associated to figure 13 are now given by the table: 

/F 
/ I 

~o,-~%=,= ~,..(o,,=6 ~ = % = 0  A 

e 5~te 4 0 

~/// / 
/ /  / i  

eT ~'r o r,o~.2r 

Again there is complete symmetry between continuous and dotted lines. Due to this 

choice of weights a down-arrow on a continuous line wi l l  never jump to a dotted 

l ine and vice-versa, thus once created on one sublattice i t  w i l l  stay there. 

Horizontal lines associated to them are defined by the auxi l iary weights: 

/ 
/ 

.# 
/ 

i / 

I 
I 

I • 
l 

I 

6-," 6" o ~2T 

e"r ~"r o co~h:~lr 



254 

The other auxil iary weights for vertices involving lines of the same type are 

deduced from the usual triangle identit ies. Then i t  is possible to shif t  them 

through TBariev 

, / ! / i / "  
I /  , i /  
r' " .v y l , , , I /  

, , ! / I , ,  
I / 

V / V  

A .t 
I / /v  

/ 

,' ,,j/ 
II i 

I ! /V 

I ,1 A ,1 
i / 1 / i  / 
I ~ I /  i / 
r X X /  
i / I  f l l  

VVV 
i /I A / 
! / I / i /  
' / V V  

/¢ 

I i l  

A similar diagram holds for a dotted horizontal l ine. 

Horizontal lines of the same type (continuous or dotted) commute among them- 

selves obviously as in section 3. Their resulting Bethe-ansatz wave function is 

simply a Slater determinant since we have a free fermion condition A = O. But 

horizontal lines of different type "create" distinguishable down arrows and there- 

fore do not commute. To construct a Bethe-ansatz wave function for them which is 

an eigenstate of the diagonal-to-diagonal transfer matrix i t  is necessary to be 

able to shif t  a pair of horizontal lines of different type through the second 
t row of vertices defining T N. To do this we have to introduce coexistence 

amplitudes: 

.~I i (~) :  amplitude for presence of down-arrow on dotted l ine with 

parameter 02 and down-arrow on continuous line with 

parameter 01" 

so that we have the diagram: 

e 
A 

/ i  II II 

+ ( ~ - ~ )  

I i I 

I 

/ 
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There is another diagram obtained by permuting dotted and continuous lines. 

The linear relations between al l  the amplitudesg~Ji(0102)_ etc . . . .  define a 

2-body S-matrix which turns out to be a factorizable elastic one /15/ having again 

a six-vertex model type of parametrization. Applying conventional techniques, this 

model is fu l ly  solved. 

2. Multicomponent-generalisation of the ice-rule, f u l f i l l i n g  the triangle relations 

have been proposed and solved by many authors /28/. We consider now the possibi l i -  

ty to have such vertex configurations on staggered lat t ice,  and ask the question 

whether the method advocated in the text s t i l l  applied. To simplify the discussion 

we restr ict  ourselves to 3-component systems. There exist basically two types of 

parametrization as shown below: 

Hence the special parameter 0 is de- 

fined modulo 3xor ~ . Here only 

horizontal lines creating the same 

type of particle, are commutative. 

To push through a set of lines of 

different types one needs ampli- 

tudes in analogy with the Bariev 

model. The net effect is that a 

"nested" Bethe ansatz wave function 

wi l l  then be eigenstate of the 

corresponding diagonal-to-diagonal 

transfer matrix. I f  one deals with 

a staggered vertex system then this 

"nested" Bethe ansatz would be 

eigenstate of two successive trans- 

fer matrices of parameters (O,~t)an~ 

(8~Z)provided that : 

2e'  = 2e + 5W (mod.3x) 
o r  

2 e '  = 2e  ~ ~ (mod.= )  

o.- sinhcx-e) lo .  si~ke c = s~nh,% 

~A" u 4 I,# n 4 4 s 12 4 1 1 ~ .  l 14 

, ,  b b ¢~ec ~ec 

0. b b ~.ec ~'ec 

b b ~'~ec ,,~ec 

b b ~-e c e.ec 

S t 13 ~/ 13 3 /  11 3 1  14 , 1 1 1 3  

o. 1o b e.'~ec ~..v~ec 
= b b e e c e-ec  

3. Solid-on-solid vertex systems: There is a well-known connection between the 

ice-rule and the variations of atom-heights on the lat t ice when the variations are 

restricted to be ±1 when passing from one site to the neighboring site. Let~ be 

the height at some site then the 6 possible arrangements of heights round a dual 

site are: 
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such that az = a~ : sin(v+O).sin N~, bz = b~ : sin g4sin N~-I) sin V(~÷l)'and 

cR = sin N.sin (Ve-O), c A = sin N.sin (Ne+O). Again O is defined modulo K . 

As shown in reference 17, a horizontal l ine can be served to define a down-arrow 

and the subsequent Bethe-ansatz for a many particle system. Hence on a staggered 

lat t ice we expect the relation (4.2.2) to hold again as solubi l i ty  condition. 

The generalisation to an e l l i p t i c  parametrisation exists /29/ but then 0 is 

only defined modulo 2 K(k) where the K(k) is the e l l i p t i c  integral of the modulus 

k. There we cannot take into account the imaginary part of the period pal lalelo- 

gram, everything else remains the same. To close this appendix note that a 

staggered eight-vertex model cannot be quite transformed into a staggered "e l l ip -  

t ic"  version of the SOS model, in this sense i t  is not clear how a staggered 

eight-vertex does have non t r i v ia l  solutions. 
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I. PRESENTATION 

It is our purpose to elaborate on certain concepts introduced in the study of flat 

random lattices [I][2] and apply them in the construction of models for random mani- 

folds. Here we choose to discuss random (~wo dimensional) triangulated surfaces. We 
[2] 

will use some of the methods and notations developped in reference 

In these days, when sophisticated differential geometry becomes ~ familiar tool in 

theoretical physics, it is nevertheless instructive to increase one's insight by 

appealing to discrete (and old fashioned) geometry. This is of interest, if only 

because it affords means to attack numerically non linear ~jroblems, classical and 

quantum mechanical. A reference work is Regge's [3] discretization of Euclidean re- 

lativistic gravity. An other !andmark is Wilson's [4] lattice gauge theory, which 

enables one to extract numerical information, however incomplete, from chromodyna- 

mics. The existence of modern computer facilities is a strong incentive to pursue 

along these lines. 

To return to our specific subject, it has been advocated by a number of authors, in- 

cluding Wallace [5] Polyakov [6], Parisi [7], Fr~hlich [8] and others, that a theory 

of random surfaces might play a role in a diversity of situations, ranging from in- 

terfaclal effects in condensed matter physics to string models and gauge theories in 

particle physics. 

The notion of a surface is itself not such a straight-forward matter as it looks at 

first. One may wish to consider it as an abstract object endowed with internal pro- 

perties like connectedness and its topological generalization (Betti numbers), me- 

tric, curvature of various other bundle structure that it can support. Or one may 

think of its imbeddings in larger manifolds, in particuler Euclidean spaces. In this 

case new concepts emerge, like topological invariants ,attached to its complementary, 

or its relation to three-dimensional manifolds it can bound. An important circumstan- 

ce is when one deals with an interface in R 3 between distinct material phases. 

An other new aspect is the non trivial structure of boundary problems. There is a 

clear distinction between curves bounded by structureless sets of points and surfaces 

bounded by curves. Typical of such questions is the Plateau problem of minimal sur- 

faces, or the study of Wilson loops in gauge theories. 

~ ~ - ~ - T - ~ I ~ - ~ T ~ - ~ i ~ I ~ - ~ - ~ i i ~ T ~ - i ~ i ~ - ~ - ~ T  ....... 
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A third aspect has to do with parametrisation and correlatively the dynamical gene- 

ration of surfaces. A curve may be viewed as the evolution of a point, while a surfa- 

ce is generated by a string with infinitely many degrees of freedom. String theories 

are notoriously difficult and have given rise to a large body of literature [9]. On 

the other han~ when viewed as an intrinsic objec% one may want to think of thesurface 

without prejudice about any coordinate choice, i.e. insist on reparametrization inva- 

riance, or general covariance of its "physical" properties. 

It is perhaps a combination of all these aspects, which has prevented up to now to 

develop a simple reference mddel with easily computable properties (at least some of 

them). Of course a number of very ingenious attempts have been made, but a clear 

picture of their inter,relationships is still missing. The work of Polyakov [6] will 

be an inspiration for our presentation, together with some analytical and numerical 

resul~of Billoire, Gross, and Marinari [10Jill] 

We~shall first present a down to earth model for random curves and recall on this 

example a poor man's definition of Hausdorff (or scaling) dimension. We shall then 

generalize the formulation to triangulated (piece-wise linear) surfaces and focus on 

the Euler characteristic and its relation to curvature. The latter can be descri- 

bed as a "frustration" preventing to identify locally the surface as a piece of 

Euclidean (metric) space. The generalization of this point of view to higher dimen- 

sional triangulated manifolds and the definition of the Euler class in terms of metric 

properties is not a trivial problem, as discussed by Cheeger, MUller and Schrader [12]. 

We shall briefly digress on this point. 

We then turn to the discussion of (massless) free fields on an arbitrary "curved", 

triangulated, surface. Eventhough we seem at first to lack the analog of the Vorono~ 

construction described in the flat case in [I],[2], we shall nevertheless overcome 

this difficulty using an embedding property as a guide. As a result we will obtain 

the geometrical elements of a "virtual" dual lattice, which lead naturally to the 

definition of differential and co-differential. This construction generalizes to 

higher dimensional manifolds. 

The need to complete the definition of the corresponding path integrals by giving an 

a priori measure (the entropy problem) leads one naturally to study the two-dimen- 

sional conformal anomaly. We include a short "pedagogical" review of this question 

following Polyakov [6] and Fujikawa [13] 

We~are then in a position to complete the discretization of a Liouville type model 

for random surfaces. The model has some analogy with a two dimensional (neutral) 

Coulomb gas with unquantized charges. At the present stage we are unfortunately una- 

ble to present a convincing analytical discussion of this model even in the mean 

field case (large embedding dimension). Numerical simulations, which are not out of 

reach, might help to figure out whether its content is richer than the one studied 

in reference [I0]. 



259 

Eventhough our original contributions are somehow meager, we hope that this presen- 

tation might be useful to some readers and help stimulate further work on this 

subject. 

II. RANDOM CURVES 

An abstract model for a closed curve is a circle. An actual realization can be viewed 

as a mapping from the circle in the Euclidean space Rd. The parameter space, the cir- 

cle, enables one to assign to each point of the curve a "time" or angle, and distin- 

guishes possible multiple points on the image. We may be interested in properties 

specific to the image and independent of the particular mapping chosen, assumed at 

least to be continuous. Indeed a complete mathematical description requires the spe- 

cification of the allowed mappings. A physicist's point of view might be more concre- 

t~with the curve being thought as an idealization for a material object, be it for 

instance a (closed) long molecule, a defect line in an otherwise ordered medium, a 

particle trajectory in a dense material... In such instances, the infinitesimal (or 

short distance) structure might be of little relevance to the large scale properties 

under investigation. One should then be allowed, in certain circumstances to replace 

the continuous aspect by a discrete one (with a very fine mesh) without altering in a 

noticeable way the overall picture. This we do, for instance, by replacing the conti- 

nuous parameter space (the circle) by a sequence of densely packed point labelled 

from 0 to N-l (with N identified with ~), N very large, to which we assign N points 

in Rd : ~o' ~l'''''-XN-I and we think of the curve as a linear interpollation between 

~i and x. . 

To define a statistical model on these "curves" requires two ingredients which are 

really not independent. The first is to give a (relative) statistical weight to each 
-S 

curve e where S is a dimensionless action, or an energy devided by kT. The second , 

is to figure out a mean to distinguish and count the curv~ (this is the entropy). As 

the curves are imbedded in R d which has a metric structure, these prescriptions are 

of course required to respect Euclidean invariance. The arbitrariness is further re- 

duced by a locality requiremen~short range interactions). The most stringent form 

assumes S to be a sum of contributions, each from a successive pair of neighboring 

points 

N-I 

S = ~ L(~i,i+ I) ~i,i+l = ]xi-xi+ll (I) 
i=O ~ v 

The a priori measure can be taken as the product measure over all but nne x.. We in- -I 
by ~' dd~i , so the overall measure reads dicate this 

dD = w' ddx. e S (2) 
i 

If one introduces [I = ~l-~o ..... [N~I = ~N-I-~N-2' the measure factorises into a 
N 

product except for the term L(£N_I,O). We then add IN in such a way that i~ 1 y = 0. 
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£ £2 
Standard choices for L(£) are e ~ or ~ ~ where a is an arbitrary unit of length. 

The first choice is attractive since S acquires the geometrical meaning of being the 

total length of the curve up to a factor. In any case we assume all moments of the 

measure ddy e -L(lyl) to be finite. Random curves such that this would not be 

fulfilled would fall in a very different class, 

A universal property of such models is then the following. Choose the arbitrary posi- 

tion of the center of the center of mass to be the origin 

N-l 

g x i = o (3) 

to this origin, the mean square radius Relative is 

i N ] 
4 = <~ i x.2> = <x2> 

-i ~o (4) 

= <(NI--~ pyp) 2> 
1 ~ 

For convenience set 

2 2 
<yi > = a N (5) 

N a~ 
Then i t  follows from { ~ = O, that <~i" ~j> = - N-1 (iCj), and therefore  

~ =-~22 (N+I) (6) 

To keep the average extent finite in the limit N ~ ~, requires therefore to adjust the 

bare parameters (in the Lagrangian) in such a way that a N ~. This is typical of a 

Brownian curve, and make it 10ok more like a two dimensional manifold than an ordinary 

regular curve. For think of a fixed manifold of dimension ~,imbedded in a space of 

dimension d, and of finite extent. Approximate the manifold by a set of N points in 

some regular fashion. The distances between neighbors will obviously scale as 
I 

a N % N]----~-. This motivates a more rigorous definition of the Hausdorff dimension ~(not 

given here)which leads to 0 H = 2 for a Brownian curve. What lies at the heart of 

the matter here~is that, apart from the overall constraint of being closed, the curve 

was constructed from independent increments. Their mean square add, leading to the 

above conclusion. Details of the short range structure are immaterial,as is the di- 
2 

mension of the imbedding space. All these are lumped together in a N . 

We cannot expect such simple properties when discussing higher dimensional manifolds. 

As far as surfaces are concerned,extreme suggestions have been made with the 

Hausdorff dimension being 4 or infinity, pointing to the fact that either one were 

not using the same concept,or one were discussing utterly different models. 
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III. PIECEWISE LINEAR TRIANGULATED SURFACES 

Some of the preceding ideas do however generalize to higher dimensions.TO be specific, 

we discuss here two dimensional (compact orientable) manifolds of fixed topology. 

First one picks a compact abstract model (or parameter space) which fixes the topo- 

logy. We choose it to be orientable. It is characterized by its genus, or number of 

handles, g, relabed to the Euler characteristics × through X = 2-2g. Then we discre- 

tize and triangulate it, for ~nstance introducing a metric and using a Voronoi cons- 

truction. This triangulation introduces the notion of nearest neighbor pairs (or 

E N is themmber of sites N 1 links) and elementary 2-simplices or triangles. If N o 

of links, N 2 of simplices, then No-NI+N 2 = X. Note that (specific to a triangulation) 

2N 1 = 3N 2 since each link belongs to two triangles and each triangle has three si- 

des, thus 

N =N 
O 

N l = 3(N-×) (I) 

N 2 = 2 (P~X) 

A somehhw troublesome question is the one of inequivalent triangfl~ation~, even for 

given N =N , that is as abstract (unlabelled)graphs. We shall assume that one is 
o 

selected for a growing sequence of N's. There is also the possibility to sum for 

each N over all possible inequivalent choices adding further entropy to the sys- 
[8][16] 

t e m  

We then map the N points in R d and interpolate linearly between the images of neigh- 

bors. Tl~is reproduces in ~d a set of point~ links (linear segments), planar faces 

(triangles),whieh may of course have numerous self intersections which we donot 

take into account. For these sets we want to introduce a measure with the same re- 

quirements as in the previous section. 

The metric on~ d induces on the image surface, lengths and ~reas for the links and 

triangles as well as angles. The triangles are Euclidean, so that their internal an- 
1 

gles add to ~. For each triangle we can therefore split unity into 1 =~ (01+02+03) 

with each 0 between 0 and ~. Summing over triangles gives N 2. But we can rearrange 

the sum by collecting all O's pertaining.to a verte~ then summing over vertices. Call 
U 

0 i the sum at each vertex. Then N~ = E -I~. From (I) this is 2N-2x= -2 X+ 2 E I. Iden- 
z i T 

tification leads to I 

a classical formula in terms of deficit angles 2~ - 0.. This is the discrete form of 
i 

the Gauss-Bonnet formula. When the deficit angle vanishes at a vertex the correspon- 

ding triangles fit in flat space. So we have the identification : deficit angle ~,~ 

curvature o,) frustration from planar situation, The identifietion with curvature can 

be easily understood on the example of a smooth surface like a sphere. Let its radius 
l 

be r and therefore its curvature ~-~ E R. For a spherical triangle with inner angles 
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~I' ~2' ~3 we have the well known relation that the area A is given by 

RA= (~i+~2+~3-~). The total amount that a tangent vector has rotated in one cir- 
3 

cumnavig~t!ion (rounding vertices) is 0 = ~ (~-~i) = 2~ - RA so that there is a total 

an~ular deficit of matter 2~ - e = RA. The limiting value of the right hand side as 
I . 

the spherical area shrinks to ~ero and R scales as ~ is the above angular defect. 

On the triang~lated piecewise linear surfac~ curvature is entirely concentrated at 

the vertices. Incidentally with our normalization the continuum version of the Gauss 

l I Bonnet formula reads X = ~-~ dA R, i.e. 2 for a sphere. For surfaces, ~urvature is a 

scalar concept and of course (2) relates geometry and topology. One observes a disym- 

metry Between positive and negative "deficit",since, at it is defined,~Si is positi- 

ve so 1 - ~ runs from I to -~ (more precisely between 1 and -(qi/2-1) if qi trian- 

gles meet at the point i). Angular-wise we cannot have more than a 2~ deficit but 

of course we can have as much as we want of extra matter. 

In higher dimensions, for piece-wise linear triangulated compact manifolds 

(dimension D) expression (2) generalizes in two ways. The notion of deficit angle 

extend easily and represents the frustration in being able to paste together in ~D 

all D-simplices incident on a I>-2 simplex of "volume" a. But now the "direction" of 
[3] 

the (D-2) simplex matters. So curvature is no more a scalar but a tensor. Regge 

has shown that if we label {e} the D-2 simpliceslthe Euclidean action for Einstein's 

gravity in discretized form is proportional to 

a rather remarkable formula. We shall not elaborate further on this point, refering 

to some recent work dealing with its derivation [14] and possible modification r~[15]. 

An other generalization is to ask for an expression of the Euler characteristics X 

in terms of curvature, when D is larger than 2 (and even, otherwise it vanishes) 

which would generalize (2). To get as simple and explicit a formula in terms of de- 

ficit angles is not easylas discussed by Cheeger, M~ller and Schrader []2]. A partial 

and unsatisfactory answer is as follows. We want to dissect the number of p dimen- 

sional simplices occuring in X = [D (.i) p Np in contributions from its vertices. 
p=O 

This is obtained by noticing that the exterior normal of a p simplex lweepsthe 

entire Sp_ 1 sphere if we round offcorners,t ~ in such a way that we can assign to each 

vertex i the corresponding fraction ~}PJ (normalized angle) of Sp_ I. The sphere S 
i I o 

has two points,so for a link we assign ~ to each end point,and for a point itself 

q~]. In the sum for X we collect for each vertex i and each v the contributions from 
[12] the d i f fe ren t  p simplices incident on i and eal l  i t  again t-tP)pi ' thus get t ing 

[ D h (4) 
X = ~ kp~O (-I)P ~P)) 

While (4) reproduces (2) in the case D=2, as it is easy to see, it has serious draw- 

back otherwise. First one fails to see that X vanishes if D is odd. Also ,if regions 
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of the manifold are flat, their contribution is not seen to vanis~ as one could ex- 

pect. Some improvements can however be made which don't seem to have the elegance of 

the corresponding continuum formula,nor of (2). Of course the Euler characteristics 

is not the only topdlogieal invariant of higher dimensional manifolds. 

IV. FREE FIELDS 

Given a triangulated surface embedded in flat space~ d, lengths, areas and a~gles 

being defined, we have a metric on the abstract structure. We want to write the 

action for free fields, and the corresponding classical equations and quantum mecha- 

nical path integrals. We have in mind generalizing the expressions given in [I] and 

[2]. We start with a massless scalar field defined on vertices and look for a natural 

quadratic form which approximates the "kinetic" term on a continuous surface, i.e. 

I ; gab 
Scont" = ~ d2~ ~g ~a~O ~bCp (1) 

ab 
Here ~ stands for the parameters, g is the inverse of the metric giving the length 

2 a b 
square ds = gab d~ d~ , and g = det gab > O. To implement our progr~nn, take on each 

in R baryeentric coordinates (flat) triangle with vertices Xl, x2, x 3 d 

~(~) = ~1~I + a2x2~ + ~3~3 ai - > 0 Z~ i = l (2) 

and extend the fidld linearly through 

¢9(~(a)) = ~1~ 1 + ~2~ 2 + ~3~ 3 (3) 

given its values at the three vertices. This is the natural harmonic exten- 

sion inside the triangle. We then apply (1),with the metric inherited on each trian- 

gle. It follows that 

i [~i (~j-~k) ~j (~-~i) +~k (~i-~j) ] 2 
Sdiserete = ~ ~ (4) 

(ijk) £ijk 

Here the sum is over the triangles and %ijk is the area of the corresponding triangle 

i.e. in terms of length edges (which satisfy the triangle inequalities) 

~2 I 
ijk = ~'6 (~ij+~jk+~ki) (~ij+~jk-~ki) (~ij-~jk+~ki) (-~ij+~jk+~i) (5) 

Translation of the surface as a whole (or rotation),or shift of ~i by a constant, 

does not affect (4) as it should. It is also possible to gi~e to (4) a form analogous 

~to the one for a ~lat random lattice, in spite of the fact that a dual lattice is 

missing. Very much as one Can define h i E l, ~ij' ~ijk for the direct lattice,we are 

~oing to introduce corresponding quantities ~ijk = I, ~ij' gi related to a virtual 

dual lattice in a natural way starting from (4). Pick one of the triangles, call it 

(123) with interior angles el, 02, 03 between 0 and ~. Then it is an easy exercise 
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in elementary geometry to show that the corresponding contribution to (4) can be 

written 

1 2 
S123 = ~ [cotg 01(¢P2~93) + cotg 02(~3-¢,,Ol)2 + cotg 03(~91~92 )2] 

as a sum of squares with algebraic dimensionless coefficients. Nevertheless the wole 

expression is of course positive. It is easily seen that if R denotes the radius of 

the circumscribed circle to the triangle then 

R cos O. 
l z 

cotg e i = 
2£23 

The quantity R cos @. is the (algebraic) distance from the center 0 of the circum- 
i 

scribed triangle to the edge (jk) and it is of the sign of ~ - @i' i.e. positive or 

negative according to wether i and 0 are on the same side or not of the chord jk. 

Two and only two triangles say (123) and (I'23) share a given link (23).Define then 

G23 as the length (algebraic) of the virtual link dual to (23) as 

+ 
023 = 023 + 023 = R cos 01 + R' cosO~ (6) 

k 

Figure 1 

It is easy to show that from the lengths £.. alone one can construct the coefficients 
zj 

~ij Each one is a sum of two terms pertaining to adjacent triangles, one of them 
£ij 

sa~ aij,is given as follows 

+ 2 2 ~2 
q cos  8 1 £I + ~2 - 

a =-~- = 2 si---~O 2 /[(gi+£2)2_£2][£2_(£i_£2)2] 

provided of course that triangular inequalities are satisfied .To get lJ just add 
tij 

two such values for adjacent triangles. 

The definition (6) agrees with the one given in the random flat case corresponding 

to a Vorono[ constructior,where thanks to its definition, the quantity ~23 was 

positive in this case, and equal to the length of the edge co.anon to two adjacent 

Voronoi cells. The fact that ~23 was then positive arose from the circumstance that 
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a circle circumscribed to a triangle contained no other point of the triangulation. 

But in the general case considered here, the quantities o.. = 0.. can unfortunately 
13 J l  

be negative. With this definition we can rewrite the positive action (4), by collec- 

ting the contribution of edges, as 

(~.. 
' 2 

Sdiscrete = ~- ( i~ j )  ~.j 
(7) 

The positivity of S (actually non negativity) entails certain inequalities, like 

ij > 0 
j (i) Oij - 

(8) 

Anyhow, we have now oij defined for each virtual dual link and of oourse Oij k 

It remains to define o.'s as areas of virtual dual cells, with the constraint 
I 

that ~ o i = ~ ~ijk = total area. A natural definition is 
i (ijk) 

= 1 .  

l :i)oij ~.. (9) °i = ~ j 13 

and one verifies of course that the above requirements are satisfied. Again (9) 

reduces to t'e flat space definition of the area of a cell in a Vorono~ constructio~ 

But here O i is in generalalgebraic. At least inequality (8) goes in the right di- 

rection to show that if the ~ij's are not too different,o i is likely to be positive. 

For the time being we shall assume that no o is zero. A small deformation of the 

surface would likely restore this condition. 

We can repeat the construction of the operators d and d * defined in [2] and analo- 

gous to gradient (and curl) and divergence on the surface. First apart from scalar 

fields ~i' we introduce vector fields ~ij = -%°ij associated to links, and antisym- 

)P Opzpjpk associated to triangles. metric tensor fields (pseudo scalars) ~9ij k = ( - l  . . . 

Then we set 

q~i'~.p. 
q)i -~ (d~P) ij = ~ J~ij 

~ij ~0ij + % j k~Pj k+ %ki~Pki 
~0ij ÷ (d~0)ijk = ~ijk 

~ijk -~ 0 

(h i ~ 1) 

(lo) 

~i ÷ 0 

* = ~ ~ ~ij ~°ij ~°iJ -> (d ~)i °i j(i) 

~°iJ k -> (:~o)i j = I__~_ ~ ~°iJ k 
°ij k(ij) 

(°ijk 
= i) 
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These operations lead to a natural definition of Laplacians. Thus for instance for 

scalars 

(-A~)i = (d*d~)i = O-~l j ) zj 

which  e n a b l e s  one to  " i n t e g r a t e  by  p a r t s "  in  (7) w i t h  t he  r e s u l t  

l (12) 
Sdiscrete = ~ ~ °i ~i (-AO)i 

i 

Of course A has dimension (length) -2 while S is dimensionless, so is ~ as it should 

in two dimensions. Equation (4) indicates that on a compact surface Sdisc" > 0 as 

soon as two adjacent ~.'s are unequal ; it follows that the only harmonic functions 
l 

are constants, and -A is a non negative operator with respect to the (possible inde- 

finite) square norm [ o i ~. 
i 

It is interesting to note that for pseudosealar fields assigned to (oriented) trian- 

gles one can write a formula analogous to (7) namely 

1 * 1 ~j l___! ~jik,)2 
(ijk)~ lijk ~ijk (dd O)ijk = 2 ( ) oij (~ijk " (13) 

where (ijk) add (jik') are the two triangles adjacent to the link ij with compatible 

orientations. Typically g's and O's appear interchanged as compared to (7). Assuming 

all o's positive, then again an harmonic pseudo scalar is a "constant" namely a cons- 

tant multiple of the orientation nij k (= ~I). Furthermore f~r vector fields ~ij' 

harmonicity is equivalent to being both divergenceless and curl-less 

[(dd*+d*d)t~j = 0 +-+ {(dig)iN k = 0, (d*~) i = 0} (14) 

Indeed if ~ij is harmonic the ~'i = (d*(P) i satisfies d*d~ = d*dd*O = -d*2d~ = 0 so 

is constant and ~ oi@ i = ~×Area = ~ o. (d~(p). = ~ ~ o..(p.. = 0, hence ~=0. So 
• i i , .t.s lj lj 
i. • i • i 

d*d~ = 0 and dd*(d~) = 0, hence dO is harmonlc, t~r~fore a constant multlple ~ of 

the orientation : ~×Area = ~ ~ .... ~.:,.(do)::~o 
('i k)_ ijg ij~ ~j~=~i]k) nijk( ij~i~+ljk~jk + ~kiq~i ) 

= 0. So (14) is fully justifie~. Incidentally (10) also snows that d n = 0. It is 

easy to show that the usual counting of harmonic vector fieldm still holds in this 

discrete context. Indeed there are N I linearly independent ~ij's and from (14) the num- 

ber of conditions is(~o-l)+(N2-1 ) (since ~ %i'kj ~i'kj (do)i'k] = 0 and 1 I~ o.(d*~).=0~1 

We then come to the conclusion that there hi-(No+N2-2) = 2- X = 2g linearly inde- 

pendent solutions to (14). 

For the time being, we continue to assume the o's to be positive and promote free 

field theory from classical to quantum mechanical by constructing the corresponding 

path integral. This requires defining properly the a priori measure (on fields). Let 

us ignore for the momen~ the zero mode problem (for scalar fields ~i = cst) or else 

introduce a mass term ~. °i ~i in the action, with m having the dimension of an inverse 

length, i 
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The a priori measure is not the product of Lebesque measures of the ~i's' or else we 

would miss the two dimensional "dilatation anomaly" of the continuous case. Since 

we are interested in comparing results for different surfaces this difference matters. 

The point is that we want the free field path integral to be related to the determi- 

nant of -A in the subspace orthogonal to its zero eigenvalue mode,call it det(-A) 

or equivalently to the product of all its non zero (hence positive) eigenvalues En, 

1 < n < N-l, E = 0. Let ~(n) denote the correspondin~ eigenfunctions of -A and 
-- -- O 

expand the field ~ in e£genmodes~as 

,(n) (15) 
~i = ~Cn ~i 

Then 

1 2 
Sdisc  = 2 ~ En n (16) 

n 

IN-1 dc n 
Z = {n-i l 1 = 2~j ~0 /-~ 6(c°) -Sdisc (17) 

En~]/2) = (det, A),I/2 e 

nln 2 (nl) (n2) N-l 
The ~'s are normalized through 6 = ~ ~i~i ~i Hence H dc n=(~ )I/2Hd~ i. 

z " o " i i 

If A is the total area then ~(o) l 1 ! -z = ~A and c o = ~ ~i~i . Thus 

Z 2~ (H ~i ) I/2 -Sdiscr. (~) 
= ~ e 6 ~ oi~Oi (18) 

2~ i " 

and this can readily be extended to include an external source. In flat space the 

extra factor plays of course no role, but it is seen to restore sensitivity to scale 

transformations, if only in the crudest sense, when we dilate all lengths by a cons- 

tant factor. 

In the best of all worlds we would like to estimate (18)pa finite integral. Since we 

are unable to do so in a manageable way,we turn now to a continuum evaluation of it. 

V. CONFORMAL ANOMALY 

In a continuous theory the action (IV-l) is conformally invariant. This is best 

appreciated if one recalls that locally any two dimensional metric can be written 

(isothermal coordinates) 

2 2 
Rab = 0 ~ab ~g = 0 (I) 

in a coordinate patch. As an example on a sphere of radius r by projection on a plane 

01,0 2 we can w r i t e  

1 ds 2 = 0 2 d~ 2 0 = 2 (2) 

I + .... 

4r 2 
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this being valid on all the sphere except one point. Then form (I) 

~d2~ ~ ~ ~ ~ ~9 (3) 1 

Sc°nt = 2 a=1,2 a a 

which makes obvious the independence over the local scale parameter 0.On the other 

hand the Laplacian is 

A~=I ~ ~2 (4) 

O a= 1 a 

and does depend on 0. The free field path i~tegral is required to be some renormali- 

zed verion of the determinant of -A to the power -I/2 with the zero eigenvalue omit- 

ted. The ultraviolet difficulty is related to the continuum infinite number of 

mode~. We then consider the variation of Z under a local variation of scale 

] 2 Z E n P 

d~(m) ~(n) 
6 ~n Z = 6 ~n J~' e ~ (5) 

Again the field has been expanded in eigenmodes of the Laplacian with amplitudes 
2 

~(n) so that the action I E n ~P(n) is invariant under changes cf 0. As O varies ho- 

wever, for a fixed field , both the ~(n) and the En (eigenvalues of -A)vary. And of 

course ~' is to indicate that the zero mode is omitted. Call the corresponding am- 

plitude tp(o ) (E ° = 0). Therefore 

6 ~n Z = < > (6) 
~q0(n ) ~-~(o) "] 

arising from the Jacobian of the transformation from ~(n) + 6q0(n) to L9(n ). Since the 

fiekd is invariant 

0 = 6(9 = 0 ~ 6~(n) ~(n) + tp(n ) 6~ (n) (7) 

and 

~(n) = _ [d2a 02 ~(n) ~@(n) = + [d2 P~O ~(n) 2 

~O(n ) J J 

(g) 

The quantity in (6) does not require to be computed in the mean, since it is ~(n) 

independent. Therefore 

~ ~(n) 2 __J_l ~A (9) £n Z = d2~ P~0 
2A 

0 

The second term ia an effect of the zero mode subtraction. The first one is ultra- 

violet infinite, due to the infinity of modes,and requires a further subtraction. 
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It is regularized in the most natural way, as 

~(n) 2 ~ ~ (n)2 -sE n 
[ ( ~ )  + , ( ~ )  e 
0 s+0 0 

= U ( s ; a , a )  

where 

- s E  
U(s;e,8) = U(s;8,e) = ~ ~(n)(e) ~,!n)(8) e n 

0 

(10)  

(11) 

(Ts - A) ~7(s;a,8) = 0 s>0 

lim U(s;@,8) = 6inv.(a,6) 
s~O 

The invariant Dirac distribution satisfies 

~0(e) = Id28 O2(B) 6inv.(~,8 ) ~0(8) 

~(n) (a) t~(n)(8) is singular when 8 -> a. Obviously 6inv.(a,8) = 
0 

We c0naider therefore 

(12) 

(13) 

I I 
A £n P (b) 

4~s 12w curv. 

(16) 

(17) 

find in isothermal coordinates 

,[ ( ] Usphere(S;~,O) e Rs 1 ~ + + = ~  I +-~ l + 4 s 8 "'" 

and therefore 

I [ R s 1 
Ucurved(S;C~'~) = 4-~s [I + -~- + ...] (a) 

6 £n Zreg(S) = ~d2~ O 2 60 U(s;~,~) - I -~ ~6A (14) 

I 
and ask for the small s behaviour. We expect terms of order ~ and finite ones as s-~O. 

In flat space | 2 

- 4-s- (~- B) 
Uflat(S;~,8) e 4~ (15) 

l 
In that case Uflat(S;~,a) = ~s independently of a. In curved space, 

I (I +a R s + ...) where and for dimensional reasons, we expect ~curved(S;~,~) =~ 

R is the curvature at ~. If this is so, it is sufficient to do the calculation for 

a sphere with the curvature R equal to r -2. Then to first order in R, using (2),we 
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The second expression is easily checked in the case of the sphere once again. Con- 

sequently) we end up with 

= / I  I'~ 
6 in Zreg \ ~ - T ~  - ~ )  6A + ~ d2~ p 2(6 in p)(-Acurv in p) 

= 6 - ~ in + ~ d2a in p (-Acurv) in p 
o 

(]8) 

We note that (17a) could be slightly improved to read for small s and in the vicini- 

ty of a point 

-d~8/4s d 2 
e r s ] 

Ucurved(S;~'8) 4zs L] + R ~ + R -T~ + ...j 

ignoring derivatives of the curvature. Here is the geodesic distance between 
1 d~8 

and B. We also observe that the factor ~-~ in the flat case can be interpreted 

as the inverse area of a circle of radius ref f = 2~ as is reasonable in a Brownian 

motion interpretation of U as a probability density. Then on a curved surface a cir- 
~ _-1(o 2 o 4) 

cle of same radius (assumed to be small) has an area (~2~R-l(l-cos 0) z~K ~-~-24 

with 0 = R+]/2 2~, i.e. 4~s I]- ~). The inverse of this area expanded in powers 

of Rs << | yields precisely (]7a), a neat way of understanding this expression. 

When discussing (]8) we first realize a shortcoming : as was emphasized P can only 

be defined in a defined in a coordinate patch~ which means sensitivity to boundary 

' )  conditions, if we wan~ to interpret ~n Z - A( ~- as a in Z . . This is 
reF \s ~- renorm~l!zed. 

exmplified in the case of a sphere with P given by (2~.While it is tempting to relate 

d2a p2 In p(-ACurved in p) = d2a £n p - Aflat In p to d2a ~ (~ gn p) 2 
a= ] a 

the first integral is finite and the second is not. Note that with our convention 

-Acurved In P = R (20) 

showing why for a compact surface w~th non vanishing Euler characteristic 

] I P2 X =~-~ d2~ R (21) 

in p cannot be defined everywhere as a non singular function. In (21) the interpre- 

tation is that d2~ O 2 is an invariant element of area, and several coordinate patches 

may be needed to compute the integral. Of course this is nothing but theGauss Bonnet 

theorem. We do not have these difficulties, on a torus,x=0,and we therefore assume 

such a simplification from now on. These subtleties do not play any role in a varia- 

tion of ~ In Zreh. when 60 is contained in a coordinate patch. We emphasize again 

that the non local term in ~ is due to the fact that we consider compact surfa- 
o ces. 
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~o proceed further, we define Gcurved(e,8) as a subtracted propagator -again because 

of the ~ero mode problem-as 

÷ i 
G(a,8)  = ~ ~ (n ) (a )~ (n ) ( f l )  ; -A G(a,B) = 8cur (a ,8 )  - A  (22) 

1 n curv 

Then for x=O 

0(~) = Jd28 02(8) ~(~,8) R(fl) (23) £n 

and the r.h.s, is insensitive to the addition to G(&,8) of an arbitrary constant. We 

therefore have 

_ A  l%n~.  + l lJ X = 0 £n Zre n So 2 2%~ d2~ d28 o2(e) 
O 

02(8) R(e) G(~,B) R(8) (24) 

up to an arbitrary additive constant. Each elementary piece of the surface is endo- 

wed with a curvature charge 

The total charge is zero 

dq(e) = d2e 02(~) R(~) (25) 

I dq(~) = 0 (26) 

and G(~,8) has a (classical two-dimensional) long range charaater of a Coulomb poten 

tial. For all its aesthetic appeal, equation (24) is not that great a simplifica- 

tion. Z was given in terms of the product of eigenvalues and it requires as much 

effort to compute G. On the other hand givena metric in,he form (1),it is easy to 

find the variations of ~n ZrenobY simple integrations. 

We have tried to find analogs of (18) and (24) in the discrete situation of the 

previous sections but failed to obtain "nice" expressions. This is perhaps not un- 

related to localization problems on such a random lattice. However inspired 

by (24), the so called "Liouville action", we may obtain a natural discretization 

for it. First the analog of G is the solution of the equation 

°ik (G(i,j) - ~ 
k(i) Z ik (k,j)J = ~ij - °i (27) 

To_ make things more symetric, we observe that, adding a small mass term to the 

Laplacian shifts all eigenvalues but a constant positive amount. The lowest eigen- 

mode with positive eigenvalue is orthogonal to the curvature for X=0(call it the 

neutral case), hence the limit m 2 + 0 is well defined. We can replace G by G such 

that 

°ik [G(i,j;m2)-G(k,k;m2)] + m2O. G(i,j;m 2) = 6ij (28) 
k(i) £ik l 
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and write in discretize~ form 

1 ~G(i,j;m 2) 
SLiouvill e = lim ~ .~'. qj 

m2_~ 1,3 
(29) 

ei ~ 
qi = !-~] ; ~qi =0 

1 

The limit m 2 + 0 has to be taken when the double sum is first computed, we can relax 

here the condition that the ~'s be positive. If we define 

Then 

~i = m2~>0 J G(i,j;m 2) qj (30) 

1 
SLiouville = ~ ~ ~i ~i (-A~)i (31) 

i 

In the neutral case, (30) has  a l i m i t  when m 2 + O, ~ r e m a i n s  f i n i t e ,  hence  S L i o u v i l l  e 

is positive. 

VI. RANDOM SURFACES 

As we discussed in the introduction there is not at the moment a consensus on good 

candidates for models of random surfaces (the most random ones !). Here we limit 

ourselves to repeat the analysis of the simplest one [10][I|], and suggest some 

"natural" modification. 

Take a torus (x=O). Choose a triangulation. Then map it in!R d as explained above. 

The simplest statistical weight is 

d~ = ~' ddx. e -~°S° 
1 

This looks 

(1) 

I I 

S =7 A=7 ~ ~ijk' o (ijk) 
a : arbitrary length unit.(2) 

like the direct analog of the Brownian case and we may wish to estimate 

what happens when the number points ~ gets large and the parameter points dense on the 

torus. This is was has been done numerically and analytically (for large d) by 

Billoire Gross and Marinari [I0]. Let us briefly recapitulate what happens following 

Duplantier [11] • Use for instance the triangulation sh~%rn on Figure 2, with n=n1=n2, 

hence No=n2 , N1=3n 2, N2=2n2. The base space has translational invariance, and it is 

assumed unbroken in the statistical model. Set for simplicity fi-kj = Bo £1jk Then 
2 " 

from dilatation covariance we have a 

Z = I~, ddxi e-8oS° = %d(n2-1)I~, ddxi e-~28oSo 

(2) 
<8 S > = (n2-1) d d d 

o o ~ ~ N ~ <f> = 
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nl 

Figure 2 

This suggests that the limit d ÷ co is a good place to look for a valid saddle point 

approximation, to which one then proceeds. One rewrites 

2 2 
lij [ (xi-x j) -4ij ]-BoSo{%ij } 

Z = In' ddxi I~ ~ d4ij e(!) (3) 

with %.. integrated over the imaginary axis (anticipating that the saddle point zj 
value will then be real) and assumes a (base space) translational invariant saddle 

point with I?. ~ I, ~?. = 4. This leads to 
lj 13 

-Seff(%,~) 
Z ~Z = cst e 

o 
(4) 

¢%-g2 
where f ( 4 , 4 , £ )  = g---~--~ and the  e l e m e n t a r y  a r e a  i s  e f f e c t i v e l y  the  one f o r  an e q u i -  

a • . 

i a t e r a I  t r i a n g I e .  The v a r z a t z o n a l  e q u a t i o n s  to  be s a t i s f i e d  by t and £ r educe  to  

d /3 42 d 
% = f = ~o -~--2 = ~ (5) 

642 a 

Nd 
The second equation has of course to agree with (2). Therefore Sef f = cst + --i- ~n B ° 

and ~ dSeff - Nd <S > as it should. Equipped with these values of I and % from (5) 
d 2 o 

we see from (3) that the statistical weight reduces to d-uncoupled gaussian (free 

field) models (in flat space) for any question pertaining to the x.'s. In particular 
1 

it is straightforward to see that <(xi-xj)2> = £2 and that 

2 1  <~x~>  
RN = N (6) 

1 / 3 4 2  1 
= ~-~ £n N = ~ <elementary area> 4n N 

The En N term results from the infrared behavior of the 2d massless propagator very 

much as in section III the linear behavior in N arose from a similar infrared singu- 

larity of the one-dimensional propagator . The numerical factor on the r.h.s, of 

(6) is specific to triangulations. It behaves like d/4 for large d and is corrected 

by a factor (I + 2/d + ...) to first o~der in |/d. This isin fair agreement with th~ 
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2 4~ I 
observations made in [10] as shown in the following table giving R N ~ £2 " ~-N 

d First order correction i + 9_. Numerical data,10j[1 
d 

3 1.667 1.73 -+ 0.04 

4 1.500 1.43 + 0.03 

6 1.333 1.27 -+ 0.01 

12 1.167 1.16 -+ 0.03 

It is unlikely that inequivalent triangulations of the torus would lead to a quali 

tatively different result or that going to a surface with a different topology 

would change the £n N behavior also observed in numerical computation. This means 

that the image surface is a strongly collapsed object in the mean. 

Our discussion of the last section suggests to modify equations (I), (2) by taking 

as probability weight (forgetting about the ~n A/A term presumably irrelevant as 
o 

compared to S o ) 

d~ = ~' ddx. e -B°S°-~iISLi°uville (7) 

i i 

as a slight generalization of the above model -where SLiouvill e has been wPitten in 

(V.29) or (V.31). 

A rough way to estimate the size of the Liouville term would be,in the same type 
2 

of simulations that have been performed before ,toocompute <qi >. Or else one could 

try to estimate it from the Gauss~an model emerging from (3). We believe that it is 

of order I. Hence the Liouville term could become relevant even when d + ~ provided 

we take E l of order d. This would then require to find different saddle points. 

To see what is involved let us look at the Gaussian model implied by (3). Since the 

sum of angles of a given triangle is ~ and each of them has equal mean value it is 

indeed very reasonable that their average value is ~ . Then look at figure 3 which in- 

volves the points A, B, with A second neighbor to B~ and compute (N ~ ~) 

~ 2  l [ + ~ I ~  3 - c o s ( k l - k 2 ) - c o s ( k 2 , k 3 ) - c o s ( k 3 - k l )  
~2 (2~)2 J_~ ~ dkldk2dk3 3 - c o s  k 1. - cos k 2 - cos k 3 

= 9 _ 6__~_~ = 1.192 
2 

6(kl+k2+k 3) 

(8) 

The point~ ABC fit in a plane and either 0 

is in this plane or else OABC fits in a 3d linear subspace. If the picture were flat 
~,2 

and regular (as on the regular triangulated plane) then -~ = 3. Apparently this is 
2 

not the case showiflg the importance of fluctuations. Most £ likely <qi > does not 
I 

vanish with ~. 

We can also rewrite (7) using a Lagrange multiplier 
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d~= 

-BoSo-BiSfree field(@)+i~ i ~iqi 
~' ddxi ~' i d~i e 

i ' -~ISfree field(~) 
J~i d~i e 

where Sfree field(~) is given by (IV.4) or (IV,12). 
t 

B 

(9) 

Fiaure 3 
It is perhaps easier numerically to deal with (9) than with (7). At any rate they 

provide a non trivial discretization of the Liouville theory and it is perhaps 

worthwhile to investigate their relevance to a model of random surfaces. Of course 

this is only a very first step towards proposing a consistent scheme to study quan- 

tized gravity in a discretized versio~ which is one of the motivations to get a 

better understanding of random geometry. 
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ABSTRACT 

Several examples of disordered one dimensinnal models are discussed : a spin glass 

chain, an Ising chain in a random field, the diffusion on a random chain, a 

Schr~dinger equation with a random potential. For each problem, one can develop ana- 

lytic methods to expand the Lyapounov exponent. 

INTRODUCTION 

A lot of problems in the physics of one dimensional disordered systems can be reduced 

to the study of products of ransom matrices [1,2,3] : spin models with random inte- 

ractions (spin glass), random field models, Schr~dinger equation with a random po- 

tential, diffusion on a random chain, etc... One usually needs to calculate the 

Lyapounov exponent y of a product of independent random matrices M which are random- 
n 

ly distributed according to a probability distribution which depends on the problem 

that one considers 

)] y = lim 1 log tr M n 
N._>~ N l 

( | )  

For an Ising chain with random interactions Ji 

H = - I Ji OiOi+| - h ~ I a i (2) 
i l 

the random matrices M are given by 
n 

i Jn+h -J +h l e  e n 

n = eJn -h M e-Jn-h 
and the Lyapounov exponent gives the free energy of the chain. 

Similarly for an Ising chain in a random field 

(3) 

H = -J I OiOi+ 1 - ~ hio i 
i i 

(4) 
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the random matrices have the following form 

e n e / l 

M n = e - J - h n  e J - h n  " = e n e_2 j_2hn  

and the Lyapounovexponent gives again the free energy. 

e-2J 1 

e - 2 h n  / 

For a one dimensional Schr~dinger equation with a random potential %V 
n 

(5) 

~n+l + ~n-I + %Vn ~n = E ~n (6) 

the random matrices M are given by 
n 

E-),V -1~ 
M ffi n 

n \ 1 0 / 

and t h e  Lyapounov e x p o n e n t  i s  r e l a t e d  to  t h e  l o c a l i s a t i o n  l e n g t h  and to  t h e  d e n s i t y  

o f  s t a t e s  by t h e  T h o u l e s s  f o r m u l a  [4]  

The main d i f f i c u l t y  w i t h  p r o d u c t s  o f  random m a t r i c e s  i s  t h a t  t h e r e  does  n o t  e x i s t  any 

g e n e r a l  a n a l y t i c  method to  c a l c u l a t e  t h e  Lyapounov e x p o n e n t s .  Only two a p p r o a c h e s  a r e  

a v a i l a b l e .  E i t h e r  one can c a l c u l a t e  n u m e r i c a l l y  t h e  Lyapounov e x p o n e n t ,  o r  one can  

t r y  t o  make a n a l y t i c  e x p a n s i o n s  a round  w e l l  u n d e r s t o o d  s i t u a t i o n s  : weak d i s o r d e r  e x -  

p a n s i o n s ,  e x p a n s i o n s  a round  t h e  s i t u a t i o n  where  t h e  m a t r i c e s  M commute,  e t c . . .  
n 

I n  t h i s  p a p e r  I s h a l l  p r e s e n t  s e v e r a l  a n a l y t i c  e x p a n s i o n s  which  can be  done f o r  t h e  

mode l s  d e f i n e d  above .  

I. A SPIN GLASS CHAIN ~N A UNIFORM FIELD [5-7] 

Let us consider an Ising chain described by the hamiltonian (2) with random interac- 

tions Ji distributed according to a given distribution 0(Ji). It is possible to find 

analytically the L~apounov exponent T in the limit of ~ero temperature for any value 

of the uniform field h if the distribution p(J i) is the sum of two delta functions [5] 

I [6(Ji-J) + 6(Ji+J)] (7) p(J i) = 

and only for small h for ambitrary distributions p(J i) which behave near J.=Oz as 

p(Ji) ~ [Ji IK (8) 

To explain the idea which allows to solve the problem at 0 temperature, let us take 

the case of the distribution (7). Then we have to calculate the Lyapounov exponent of 

a product of matrices M which can take two possible forms : 
n 

z z -1+~ - I + ~  

Mn ffi z-1-~ zl-~ / °r Mn = I-~ ~/ z z - l -  (9) 
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h 
where z = e J and ~ = ~. The 0 temperature limit corresponds to z -+ 0% 

The main simplification which occurs in this limit z ÷ oo is the following : when one 

performs the product of two matrices A and B, each element of the product AB is the 

sum of products of elements of A and B. In the limit z ÷ 0% one can replace this sum 

by its largest term. If we start with an arbitrary vector V and we define V by 
o n 

n 

V = II M. V (10) 
n i=l z o 

Then if we write (an 
z b 

V = (ll) 
n z n 

one finds that for the random matrices given by (9), the problem reduces in the limit 

z + oo to the following recursion for the a and b 
n n 

and 

f 
an+ l = maX(an+l+ e , bn-l+~) 

bn+ l maX(an-l-~ , bn+l-e) 

f 
an+ I = maX(an-l+~ , bn+l+~) 

bn+ l maX(an+l-e , bn-l-~) 

l 
with probability 

I 
with probability 

(12) 

In the limit n + ~, the difference a -b has a stationnaryprobability distribution 

which can be calculated exactly [5].nTh~n one finds that for the distribution (7) of 

the bonds that the Lyapounov exponent behaves like 

E 
y = ~ log z + cste in the limit z ÷ 

where E is the ground state energy per spin and is given by 

J (n2+3n) +2h (n+ 1 ) 2 2 
E = (n+l)(n+2) when ~ < ~ < --n (13) 

So n is just the integer part of 2/e = 2J/h. 

For more general distributions 0(Ji) which have a behaviour given by (8), one can 

find y at zero temperaturefor small values ofthe field h[6'7]and from the expression 

of y one can show that the zero temperature magnetization m of a one dimensional spin 

glass chain is given for small h by 

K+I 

m = h K+3 C K (14) 

where C K is a constant which can be calculated [6] from the knowledge of 0(Ji). It 

is interesting to notice the non analytic behaviour of the magnetization (for a 
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gaussian distribution of the Ji' m ~ hl/3). In this first example, the main simpli- 

fication was that sums of products of elements could be replaced by the largest term 

in the sum. 

In the next example, we shall consider a case where the matrices M almost commute. 
n 

[8] 
II. AN ISING CHAIN IN A RANDOM FIELD 

For the Ising chain described by the hamiltonian (4), we need to calculate the 

Lyapounov exponent y(g) of the following product (see (5)) 

1 N (I E ~ 
y(g) = lim ~ log tr ~ \ z" ~ 

N-~° i=l ezi 1 

-2J -2hi 
where e = e and the z. are random positive numbers z. = e 

i i 
is known when the distribution of random field is known. 

(15) 

whose distribution 

For E = 0 the matrices commute and the problem is therefore very easy 

y(O) = max(0, log z) (16) 

A natural question is to try and expand y(g) around g=O. Let us see how such an ex- 

pansion can be done. To simplify the discussion let us assume that the distribution 

of the z. is such that 
i 

log z < 0 (17) 

If we define V by 
n 

Vn _/an~ I g yan_l~ 
-~bn) = (eZn_l Zn_1 ) ~bn-1) 

Then one can use several equivalent definitions to calculate y(E) 

(18) 

~(E) = lim ~ log = lim log R i 
N-~ N ->~o i I 

(19) 

where the R. are defined by 
i 

R. = a i + l  (20)  
1 a.  

1 

I t  i s  e a s y  t o  s e e  f rom (18) t h a t  t h e  R. s a t i s f y  t h e  f o l l o w i n g  r e c u r s i o n  r e l a t i v e  
1 

Ri+ 1 = l+z i + zi(e2-1)/Ri (21) 

To expand ~((g), one can assume that the R. can be expanded in the following form 
l 

log R. = A. e 2 + B. e 4 + ... (22) 
I i I 
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Then (21) gives recursion relations for Ai, Bol etc... 

Bi+ ! +-- 

A'+ll = z. + z.A. (23) 
i i l 

A 2 A. 2 
i + l  z 
2 = -z .z  A.z + z.1 B.1 - z.z ~ 2  (24 )  

and the expression of y(g) is then given by 

y(E) = ¢2 ~ + g4 ~ + ... 
(25) 

When one calculates A, one finds that A is finite only if 

z < I (26) 

and is given by 

= -- (27) 
i-7 

Similarly, when one calculates B, one finds a more restrictive condition 

2 
z < I (28) 

for B to be finite and one finds 

= - ! (l+z)2 z2+2(z)2(l-z2) (29) 

2 ( 1 --~) 2 (l-F) 

One expects that the coefficient of g2p in the expansion of ~(~) will be finite only 

if 

z p < 1 (30) 

One can of course ask the question of the behaviour of ~(~) when E ÷ 0 if one of the 

canditions (26), (28), (30) is not satisfied. For example if the distribution of the 

z. is such that 
i 

log z < 0 but z > I (31) 

Then one can show [8] that y(E) has a non analytic behaviour when ~ ÷ 0 

26 
y(~) ~ C g (32) 

where ~ is given by the positive solution of 

z = 1 (33) 

EKcept in a few special cases~ the exact calculation of the constant C is a very 

hard problem [9] 

A physical interpretation can be given to the non analytic behaviour (32). The expan 

sion around g = 0 is a low temperature expansion around the ferromagnetic configura- 
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tion. When y(g) ~ g2, the expansion is given by the contribution of configurations 

with finite clusters of spins flipped. When ~(g) ~ g2~ the contribution of configu- 

rations with an infinite number of spins flipped is dominant. 

This random field Ising is mathematic~!ly very similar the problem of the diffusion 

on a random chain. Consider a particle which diffuses on a chain according to the 

following Master equation [10,|I] 

dP. 
i 

dt = Wi,i+l Pi+l + Wi,i-1Pi-I - (Wi+l,i + Wi-l,i ) Pi (34) 

where Pi denotes the probability of finding the particle at time t on site i and the 

hopping rates W.. are randomly distributed according to a given probability distribu- z] 
tion. When one considers the Laplace transforms Qi(~) of the Pi 

I ~ e_~t Qi(m) = Pi(r) dt (35) 
o 

One can try to expand in the limit co ÷ 0 the Lyapounov exponent y(~0) defined by 

I {QN (~o) 
y(m) : N-~olim ~ log ~Qo--o-.~) (36) 

where we assume that Qo and Ql have been chomen arbitrarily and that the Qn for n > 0 

are calculated using (34). 

In the expansion, the term linear in to gives the velocity whereas the coefficient of 
2 . 

~0 zs related to the diffusion constant. As for the random field problem, the condi- 

tion for the coefficient of 2 to be finite (i.e. for the diffusion constant to 

exist) is stronger than the Condition for the coefficient of to to be finite (i.e. 

for the velocity to exist )[II] 

We have seen with this second example that the expansion around the situation where 

the matrices M commute may be singular. We shall see in the next example that the 
n 

weak disorder expansion of the Lyapounov exponent may also become singular. 

III. %HE ONE D IMENSION]~L SCHRODINGER EQUATION IN A .RANDOM POTENTIAL [12,13] 

Let us consider now the discretized Id Schrodinger equation (6) with a random poten- 

tial %Vn where the Vn are the distributed according to a given distribution P(Vn). 

Like in the previous example, one can introduce the ratios R defined by 
n 

~n 
R : ( 3 7 )  
n ~ni| 

The R satisfy the following recursion 
n 

1 (38)  Rn+ 1 = E - % V n - ~-- 
n 
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and a possible definition of y is 

1 N 
Y = lira: 

N->~ n= I 
log R n (39) 

A way of expanding ~ around % = 0 is to assume that the R 
n 

fo l lowing  way 

R = A exp(%B n + ~2 C + ...) 
n n n 

Then the r e c u r s i o n  (38) g ives  r e c u r s i o n  r e l a t i o n s  fo r  the An, Bn, C n 

1 
An+ I = E - 

n 

can be expanded in the 

(40) 

etc... 

An+ 1 Bn+ 1 = -V n + B /A n n 

An+l(en+ 1 + 1 B2+l) = (Cn - 1 B2n) / A 
n 

(41) 

For any complex value of the energy E which does not belong to the spectrum of the 

pure system i.e. 

E # 2 cos q with q real (42) 

the A converge to A the root (with largest modulus) of 
n 

A = E - |/A 

and the expansion of y is given by 

(43) 

T = log A + % B-- + %2 ~- + ... 
n n 

(44) 

From (41) one can calculate B, C etc ... and for a distribution of V 
n 

<V > = O, one f inds  n 
1%2 A 2 <V2> 

y = log A - ~ (A2_I) 2 

1%3 A 3 _ _ <V3> 
2 (A2_1)3 

1%4 A 4 _ _ ~ <V4> 
4 (A2_I)4 

1%4 3+2A 2 I 

- : 71: (Am-1) 4 

<v2> 2 + o(% 5) 

with zero mean 

(45~ 

This expansion is valid as soon as condition (42) is satisfied. One sees in this ex- 

pansion that if one tries to approach energies like E ffi ~2 (i.e. A + ~I) or E ~ 0 

(i~.~e. A ~ ~i) the expansion (45) becomes singular. Moreover one should expect that 

if the expansion (45) was pushed further, the denominator (A2n-l) -I would appear at 
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order X 2n and therefore at all energies of the form E = cos 2~'~ with ~ rational, 

the expansion (45) would become singular. 

To expand y for energies which belong to the spectrum (E = 2 cos q for q real), the 

ensiest way is to work with the stationnaryprobability P(R,E,%) of the R . From the 
n 

recursion (38) on the Rn, one can show that P(R,E,%) satisfies the following inte- 

gral equation 

rp(v) dV I p( 1 E, X~ P(R,E,%) = (46) J (E-R-%V) 2 \E-R-%V ' 7 

and the Lyapounov exponent y is given by 

= ~P(R,E,X) dR log IR[ (47) 

The band edse (E=2) 

One can show [12] 

a scaling form 

FfR-I ~E-2 P(R,E,X) tX2-"~7" ~ , X4/31 

and that it satisfies a differential equation which can be solved. 

For E=2, one finds [12] that for % ÷ 0 

that in the limit E ÷ 2 and % ÷ 0, the distribution P(R,E,%) takes 

(48) 

~ (6%2<V2>) I/3 ~ .2893...(%2<V2>) I/3 (49) 
2F(~) 

and for E ÷ 2, y has the following scaling form 

~ (%2<V2>)I/3 f( E'2 
\(~2<V2>)2/3J 

(50) 

where f is a function which can be calculated. 

The band centre (E=O) 

One can also calculate the Lyapounov exponent y in the limit E ~ 0 and % ÷ 0. Again 

in that limit, one cannot expect the expansion (45) to be valid since the term of 

order %4 diverges. 

One can again solve the integral equation (46) in that limit and one finds that the 

Lyapouno= exponent y takes again a scaling form 

y.  2<v2> <5> 

where the scaling function f can be calculated [11,14] for example f(0) =(r(~)3/p(~)l ]~2 
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and f(m) = I/8. One sees that for E=0 and % + 0, one has 

7 ~ f ( O )  = = . 1 1 5 4  ( 5 2 )  
X2<V2> kF-~_~)] 

which is in agreement with the result of a Monte Carlo calculation [15] but disagrees 

with what could be expected from formula (45) (which wo~ld give y/~2<V2> + I/8). 

The limit E ÷ l has also been calculated recently [12,16] and again, the expansion 

(45) becomes singular and the result contains a scaling function of (E-I)/~2<V2>. 

Let me just mention here that the expansion (45) can also be done for quasiperiodic 

potentials, for example 

V = cos(kn + ~) (53) 
n 

where k/2~ is irrational. 

One finds that up to second order in %2 

%2 A2+I A 2 
= log A 

4 A2_I A4-2A 2 cos k+ I 
(54) 

It is interesting to compare (54) with (45) because in the limit E + 2 cos q (which 

should be done carefully as discussed above) formula (45) gives a real part to y in- 

dicating that a weak disorder is enough to produce a finite localisation length 

whereas formula (54) shows, at least at order %2, that the quasiperiodic potential 

(53) does not localise for % small. 
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EXACT DISORDER SOLUTIONS 

Paul Ruj~n 

Institute f~r Festk6rperforschung der KFA, J~lich and 

Institute for Theoretical Physics, E6tv6s University 

Budapest. 

The topic of my talk is the discussion of order and disorder trajecto- 

ries in lattice systems with competing interactions. My main goal is to 

show that although the mathematical formulation of the problem is extre- 

mly simple, the resulting body of physical informations is surprisingly 

rich. I take the opportunity to give a rather pedagogical presentation 

of the topic and also to comment on the history of this subject. The 

seminar is organized as following : 

i. Mathematical formulation 

2. The scheme of dimensionality reduction 

3. General physical properties on and near disorder trajectories 

4. Examples: a, Decoupling lines for quantum-spin Hamiltonians at 

T=0; b, Crystal growth formalism and disorder lines for Ising and Potts 

models on a triangular lattice: c, Phase diagram of anisotropic three- 

dimensional closed packed lattices 

5. Further applications and conclusions. 

i. Definitions and mathematical formulation : Order and disorder trajec- 

tories are trajectories /subspaces/ in the parameter space of lattice 

systems with competing interactions. In such systems one has not only 

the usual/thermal/ competition between energy and entropy possibly lea- 

ding to a phase transition-but also an additional competition between 

two or more T=0 ground states with different periodicities. Schematical- 

ly I shall represent a phase diagram in terms of a temperature like pa- 

rameter T and competition ratio denoted by <. The lattice systems under 

consideration may be classical statistical systems with short range in- 

teractions, quantum spin Hamiltonians at T=0 or lattice gauge systems 

with mixed actions. A disorder/order/ trajectory is a ~D(K) line in this 

phase diagram with well defined properties /see section ~, lying entirely 

intoa disordered/paramagnetic of fluid/phase or, respectively, into on 

ordered phase For some models the partition function and some correlation 

functions can be determined exactly along these trajectories and this is the 

point of view I would like to put forward here. A given model with'competing 

interactions may have or may have not an exact solution along some trajectory 

on the (T,<)-space. According to my experience, however, is much easier to 

inverse the problem and to construct that class of models which does have an 
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exact solution/I mean here ground state properties of Hamiltonians 

or transfer matrices I. To make this point clear let me present the 

simplest possible example• Consider a one-dimensional SchrSdinger- 

-equation: 

[ 122+ucx)]~ =~ <l) 
HTn = - ~ x n n n 

The inverse problem in this case is to /re/construct the Hamiltonian 

operator from the known {~n } set. This question was solved long ago 

by the french mathematician Darboux I . Assume that one has a discrete 

non-degenerate nodeless ground state 

~o [x) = e -~(x) , (2) 

where ~[x) is some given function and ~o is normalizable. An 

elementary calculation shows that (2) is the ground state if 
1 ~,~ 1 2 

U(x) = E O - ~ ~ 9' thus 

- i ~2 + 1 ,2 1 , , ,  1 AAt C3) 
H ~ -5 x ~ ~ -2~ - EO = 

is a semi-positive definite operator with Eo = 0 and~ O Cx~ = ~oCX) , 

~=~ -~' 
X 

This factorization was known already by Schr~dinger 2 himself and this 

"ground-state representation" is very useful 3 in constructing a 

supersymmetric quantum mechanics 4 . What is important for our pourpose, 

however, is the observation that the Schr~dinger-equation in purely 

imaginary time can be considered as a Liouville time-evolution operator 

under the action of which any ~t relaxes to the unique stationary 

state 
o 

This idea can be generalized to any transfer matrix corresponding 

to classical statistical models with short range interactions. Since 

in the spin-basis the elements of the transfer matrix are Boltzmann- 

weights the matrix is non-negative and according to the Frobenius- 

theorem the eigenvector corresponding to the largest eigenvalue is 

nodeless : 

A 

T~o =; 'Jo ' (~'o) i > °  C4) 
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Assuming that ~o is known the similarity transformation 

1 T 
P = 10 O i 

". 

defines a stochastic P matrix. Again, this operator can be interpreted 

as a time-evolution operator leaving the ground state ~o invariant 

by construction. 

2. Dimensionality reduction 

We are now in the position to present the general construction 

scheme. Our choice Qf ~ ~ will be such as that 
o -- 

(~o'~o) -- Z (6) 

where Z is the partition function of some fictitious /I shall call it 

underlying/ system. ~ is some free parameter-set characterizing the 

underlying system. Any equal-time operator has then the ground-state 

expectation value: 

A ) 
O'  0 

(7) 

Since the partition function (6~ represents a "row" spinlsystem 

its dimensionality is less than the dimensionality of the original 

model represented by the transfer matrix T. This dimensionality 

reduction may be of two kinds: d ÷ d-i or d ÷ O dimensionality 

reduction. The scheme of the dimensionality reduction is shown below 



289 

I d+l dimensional 
c l a s s i c a l  s t a t . m o d e l  

~- with 

competing interactions 

Hamiltonian 

limit or 

exact 

mapping 

d, dim. 

transfer 

operator 

d. -dim. ]] 

quantum-spin 

model at 

T=O 

< 
d.dim. ~ operator 

with many-spin 

l dynamics 

- crystal growth 

- cellular automata 

d.or O.-dimensional 

classical underlying 

model with 

simple interactions 

J 
d.dim. ~ op. 

with one-spin 

dynamics 

-Glauber-type 

kinetic models 

/ ~ -stands for a Liouville-type time evolution operator / 

In this scheme quite different parts of the statistical and quantum 

physics are present, is thus not unexpected to find many independent 

and parallel discoveries of the disorder trajectory phenomena. 
5 

I should mention first the extensive work of Stephenson 

/1964,1966,1970/ who solved exactly one - and two - dimens{onal Ising 

models with competing interactions and observed the presence of 

disorder points. At this disorder points some correlation functions 

simplified spectacularly and also the pattern of correlations changed. 

Such behaviour was reported also in other exactly soluble free-fermion 

models 6, although the dimensionality reduction was not yet realized and 

exploited in full. This first decade was followed by ~ery interesting 

work on an apparently quite different field, namely the field of 

crystal growth. Wellberry and Galbraith 7 /1973,75/ and many others 

initiated the study of stochastic crystal growth models, some of them 

being amenable to exact solutions. Enting 8 and Verhagen 9 deserve the 

merit to have made the connections between these exactly soluble 

crystal growth models and disorder phenomena in Ising spin systems 
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with competing interactions. 
IO 

Independently, Peschel and Emery realized the lower part of 

the dimensional-reduction scheme in the context of the two-dimensional 

axial nexh-t~-nearest-neighbour Ising /ANNNI/ model and their work 

helped significantly to clari~y the phase diagram of the 2D ANNNI- 

model. Myself I simplified and generalized the peschel and Emery 

method II'12 and later using the crystal growth representation I did 

a rather complete classification of disorder lines in two-dimensional 

models 13 Very recently interest on cellular automata 14 models 

/which are equivalent to crystal growth models/ have again led to the 

rediscovery of disorder type solutionl~ also in three-dimensional 

models 16 . 

Among ~he most interesting applications of these results stand 

the calculation of the generating function of oriented lattice animals 

in two- and three dimensions by Dhar 17 

3. Physical properties near and on disorder trajectories. 

3a. Phase d~a~rams 

One of the main informations one obtains from the presence of 

such disorder /order/ trajectories pertain to the degeneracy of the 

ground state. If the ground state is not degenerate the trajectory 

T D (K) should be on the paramagnetic phase. If the ground state is 

degenerate one has an order line and T O (<) lies on an ordered phase 

/see Section 4c/. 

3b. Change in the pattern of correlations 

From exactly soluble models one knows that along the axis of 

competition 

<soSR > ~ R -~ exp (-R/~( 1 if T > T (<) 
II R÷~ D 

but 

<S°SR>II R~"+ ~ R - e  cos q(<,T) exp (-R/~ll) if T < TD (K) (9) 
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Here ~ is the Ornstein-Zernicke exponent, q(<,T) is in general a 

continuous function of (~,T) For this reason one calls this region 

oscillatory or incommensurate disordered /ordered/ phase. Note that 

sometimes thedisorder line is defined by the T (<) trajectory where the 

maximum of the structure factor 

eikll R [iO) s (_kll) = R <s° sR>l~ 

moves from ~II = O to some k~ # 0 value. This trajectory is different 

from our definition, based on the R÷~ behaviour of the spin-spin 

correlations. 

3c. Sin@ular behaviour along the disorder trajectory 

~,I ~ 6T--T D (K})-VII ~11 : ~ in the underlying 

model (ii~ 

~ = 7. . . . .  

c : critical point in the underlying model 
D 

Z : critical dynamic exponent 

Using hyperscaling Domany 16 /1984/ predicted 

/Ruj~nll,1982/ 

Z = (2+  ~ ) 9 in the underlying model (13)  

C 
Since in general ~i|# ~ one has anisotropic scaling at T D (<) and 

it is tempting to identify it as a Lifshitz-point /multicritical point 

at the common border of a disordered, an ordered and a incommensurate 

phase/. 

3d. Exact solutions, analytic continuations 

As already explained if T = TD(< ) one is able to calculate Z, 

<SoSR > as long as ~o,~o) , (~o,So~R~o) can be calculated exactly. 

These solutions can be analytically continued in the parameter set 

until Z = C~o,~o) hits the Lee-Yang singularity edge /this happens 

for orie--nted lattice animals - see Dhar 17 /. A different possibility 
18 

is to use the matrix inversion relations as recently done for 
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2D Potts models 19 . In two-dimensions the fully integrable models do 

exhibit disorder solutions. It would be of interest to known which 

are the three-dimensional models with "disorder" solutions satisfying 

also the tetrahedron-equations. 

4. Examples 

4a. Decouplin~ /order/ lines .in a general I/2-spin Heisenberg model 

at T=O 

Consider the Hamiltonian: 

r' +(1-y)~Y ~Y + v 
<r,r'> -- -- r r' - - - -  ~ ~ • ~ 

" k i n e t i c  e n e r g y  . . . .  p o t e n t i a l  e n e r g y "  

and the following Ansatz for q : 
o 

(m Z r ) I 0 + >  X I0+> = + iO+> Vr  C15) I~O > = exp 2 Eo ; r -- -- 

where x,oy, oz are the usual Pauli matrices. 

Then 

> =-e 2 _ ~ a+b 
H I~ O <r,r' > 

local terms involving 

z z 
a and its nn s 
r 

In one-dimenslon 

j 3 j+l + ( l - Y )  3 j+l 3 j+l + Z 

decouples /has ~o of form (i~ / if 

(16) 
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2 
Y 

I h l  2 : ( ~ -  l) 2 + 

A < i- y /e is real/ 

~17) 

Also because of the structure of (14) 

~ 2 
I ~ 0 >  = e l O _ >  

hc l I '3 
I 

I 
I 
I 
I I 

I I 

/ / 

/ " ~ "  2 

2 

I~o> is degenerate with 

I 2 3 

u 

J 

The A=O plane is the free-fermion plane. Within the cone one has 

oscillating correlations /incommensurate ferromagnetic phase/ while 

outside the cone they are monotonically decaylng.Within the cone and at y=O 

one expects a truly incommensurate phase. Now consider the Hamiltonian 

~16) with A=O but yj = p 6(yj-Yo~+~l-p~ 6(~j+Yo ~ 

h~ = q 6Ch~-h ~ +(l-q~(h&+h ~ quenched probability distributions. 
• " " "  v2 2 J 

Obviously if Yo + ho = 1 Eq. (17) is satisfied and one may calculate 

exactly the ground state properties of this random Hamiltonian on the 
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one recovers the original Ansatz-layer. Moreover , the 

correlations between even-spins/t=l row/ are the same as between 

odd-spins /t=O row/ Proceeding further with the construction of 

the crystal using the "detailed balance" rule (2~ one gets a "two- 

dimensional" crystal where the spin-spin correlation on t=constant 

equal time rows are the same and are those of the original Ansatz- 

For the form (2 9 one gets the disorder solution on the layer. 
5 

antiferromagnetic A Ising model If one includes also an external 

field one has the following phase diagram 

h 

h 

where 

0n 

2xl '~ CL \ 

3 H  

h = , T  = 

I J l l  + la21 + IJ3 r 

\ 
\ 
\ 
\ 

ICL 

q~D 

3kBT IJll=IJ21= JJl 

JJll ÷ rJ21 + IJ31 IJ3J< IJl 

One has a 2xl ordered and a 3xl ordered phase as well as an 

incommensurate IC phase and a ferromagnetically disordered 

CL = commensurate-liquid phase where the correlatins are of the form 

<SoSR > ~.~ ~i) R R -I/2 e -R/~ in CL 

R÷~ 
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order line. The procedure can be generalized to higher dimensions. 

An example of a 3+l-dimensional Z 2 gauge lattice theory on a disorder 

line has been presented by Ruj~n and Patk6s 12 

4b. Stochastic crystal ~rowi%h alias cellular automata 

melt /reservoir/ 

/ 

% 
X / , ~  X 

%'0 v' ~' ~- '  "e /\/\/ 
\/\/\ 
/A/A/ 

The probability to 

occupy s o (So=+l) 

depends only on 

precedessor spins 

Sl,S2,...(O ) but 

not on same generation 

spins Cx) 

"time" crystal 
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One has a stochastic /Markov/ process: 

Pt C~si'~i~ ) =[T p {si' Si,l'Sq,2)} Pt-l~Si~ 

new old new 

generation generations generation 

spin spin 

(2o) 

Although the dynamic properties of such systems are very interesting 14'20 

we treat here only equilibrium properties. Consider the Ansatz-layer 

/a row of Ising spins/ 

O X O X .... 8E = 7. (~ S2j S2j+I +8 S2j_I S2j ) 

S u m m i n g  o u t  e x a c t l y / i t e r a t i o n / t h e  e v e n  o r  Qdd s p i n s  o n e  o b t a i n s  a n e w  

row of spins with half of spins left and with an effective coupling 

1 cosh (~+8) 
K 3 (e,8) = ~ in cosh[e-8) Thus the probability distributions of 

even and dd spins are identical. Imagine now the inverse operation: 

start with the odd spins distributed according to the effective 

coupling K 3 and decorate 

/°\/\/\/ 

the chain in the manner shown above. If the decoration is made such as 

P~S2j I s2j_l,S2j+l) = e ~s2js2j+l+ Bs2j-lS2j / 2cosh ~ ~s2j+l + ~s2j_l ) 
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divided by a disorder line from the disordered ICL = incommensurate 

liquid phase characterized by modulated correlations: 

<SoSR> [ R -I/2 e -R/~ in ICL 

On the disorder line the correlations are one-dimensional 

-R/ 
<SoSR> = e V R ! 

Note that the slope of the IC-boundary at the hc2 point corresponds 

to the critical activity of the exactly soluble hard hexagon model. 

The procedure is easily generalized to q-state spin models. For 

the isotropic Potts model on a b-lattice one obtains a T O q # O 

disorder point for O<q<2 <TD(q=2~ = O ; TDCq=O ) = ~ which may 

indicate that the critical point T c <T D moved also to Tc>O 

temperatures. 

4c. Possible phase diagram of closed packed three-dimensional 

lattices 

The simplest generalization of the A-lattice to three dimensions 

consistsoZ closed packed lattices. Consider hexagonal planes which 

are shifted on each other as shown below by the O, D and x lattice 

points. Calling the planes denoted by 0, D , and x as A,B,C one 

may form closed packed 3D lattices as regular sequences of A,B,C planes 

/ABAB .... = closed packed hexagonal, ABCABC ... = fcc lattice/ . 

For our models it is not important to have regular sequences, only 

that the nn. coupling between planes Ko should be different than the 

intraplane nn. coupling K 1 . If one choses as Ansatz a 2D honeycomb 

lattice the same calculation as in two-dimensions leads to the 

trajectory 8,16 

1 cosh 3K ° 

K 1 = - ~ in cosh K O 22 

This trajectory is not strictly speaking a d~sorder line since if 
> hex 

K hex the ground state is unique /disorder/ while for Ko Kc it Ko< c 

is /at least/ twice degenerate. The phase diagram of such a closed 

packed system is schematically shown below 
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% 

\ 

\ 
\ 
\ 

CL \x~. ICL 

" " ~ ' ,  ~ ' ~ x a c t  
. "q'~, L / "disorder" I 
ferro "~x./ so ution 

. . . .  

I/Z 

13 

X 

0 n x 0 Q 

X 0 m X 0 

0 El X 0 Q 

x 0 Q x 0 

o Q ~ 0 [3 

0 r-1 

X 

A plane x 
B plane o 
C plane 

--l~l/iW,,i 
One expects a ferromagnetic ordered phase where the magnetization 

points perpendicular to the hexagonal planes. If <=O one expects an 

usual 3D-type Ising transition between the disordered and the 
3D 

ordered phase T c At T=O one may show that for <>1/2 the 

minimal energy is obtained for mz=O configurations while for <+~ 

one has decoupled antiferromagnetic A planes whose critical point is 

at %2 = O. When the underlying model /here the 2D honeycomb Ising 

= ~ex the disorder line model/ undergoes a phase transition K ° c 

ends up probably on a Lifshitz-type multicritical point whith 

anisotropic scaling and for K > ~ex it probably follows the 
o c 

ferromagnetic phase boundary. We think that the line T=O, K>~ 

is a critical line, possibly with varying critical exponents. The 

possibility of a truly incommensurate phase as indicated in the 

figure is not ruled out by RG-arguments and seems quite plausible. 

Note that the presence of the {22) trajectory rules out the 
21 3D 

possibility of a "chiral" transition between T c and L. I think 

that these models deserve further work on view of their possible 

experimental realization in intercalated conpounds. 

× 
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5. Conclusions 

In conclusion we have seen that sometimes quite simple mathematics 

may lead to a rich body of physical informations. I think that new 

interesting results can be obtained through different analytic 

continuation of these calculations. It would be also useful to use 

more sophisticated Ansatze as well as to consider the dynamic 

poperties of systems with competing interactions. 
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THE COULOMB GAS SYSTEMS : SOME RIGOROUS RESULTS + 
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F-13288 MARSEILLE CEDEX 9 

i - INTRODUCTION 

A Coulomb system is a system of identical spinless particles of charges ± e inter- 

acting via the Coulomb potential 

It will be therefore a very rough approximation of a pure system of particles (for 

instance ions and electrons) interacting through the e.m. interactions. 

The most relevant approximations are : 

I) Relativistic effects are neglected 

2) Particles with opposite charges are equal on any other respect 

3) The spin dependent interactions are neglected 

4) Interaction with the radiation field is neglected. 

Therefore the models we want to discuss are a caricature of these models but neverthe 

less they present interesting features and have a very rich structure. 

The interaction is a two-body interaction : the potential is 

[xl  d = i 

V (x) = ~in ( 1 ) d = 2 
1 ,x~ (1) 

d = 3 
4~ txl 

The first problem to face is to give a meaning to this system as a statistical mecha- 

nics system : this essentially means we have to control : 

a) the ultraviolet problem (stability problem) (short distance) 

b) the infrared problem (thermodynamic limit) (long-distance) 

+ T a l k s  g i v e n  a t  C .P .T .  M a r s e i l l e ,  1984.  

* U n i v e r s i t ~  d i  Roma 

x L a b o r a t o i r e  p r o p r e  du C .N.R .S .  
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The ultraviolet problem 

To c o n t r o l  the  s t a b i l i t y  p r o b l e m  m e a n s  tha t  we want  the m o d e l  to be such  to 

p r e v e n t  c o l l a p s e  of i n f i n i t e  p a r t i c l e s  in f i n i te  r e g i o n s .  O the rw ise  the  mode l  Is no t  

suited to be a reasonable approximation of systems When collapse is not present. 

If. v i c e - v e r s a ,  in our  m o d e l  s o m e  fo rm of c o l l p a s e  Is p r o d u c e d  we want  to 

c o n t r o l  it and  have a p h y s i c a l  e x p l a n a t i o n  of It. Th is  is exac t l y  wha t  h a p p e n s  I n s  

c e r t a i n  r a n g e  of the  t e m p e r a t u r e  in the  d=2 c a s e .  as wi l l  be d i s c u s s e d  in d e t a i l  

later. 

T h e r e  a re  d i f f e r e n t  non e q u i v a l e n t  d e f i n i t i o n s  of s t a b i l i t y  a l l  a m o u n t i n g  to 

g i ve  a m e a n i n g  to the  p a r t i t i o n  f u n c t i o n  of the  sys tem in the  g r a n d  c a n o n i c a l  

ensemble.  

H - s t a b i l i t y  : a sys tem Is said H - s t a b l e  If for  any  pos i t i ve  i n tege r  N. c a l l i n g  H (N)  the  

In te rac t i on  ene rgy  of N pa r t i c l es ,  for any  con f i gu ra t i on  the fo l lowing Inequa l i t y  ho lds  

H ( N ) ( q l  . . . . .  qN ) > - const. N (2) 

the constant being uniform In N. 

i t  Is v e r y  e a s y  to p r o v e  tha t  for  d>2 a c l a s s i c a l  C o u l o m b  gas  Is n e v e r  H -  

stable.  

( T h e  a n a l o g o u s  of H - s t a b i l i t y  is p r o v e d  in the  q u a n t u m  d o m a i n s  p r o v i d e d  o n e  

of the two part ic le species Is fermlonlc.  (Dyson-Lenard  ; Lleb) [ 1 ] ) .  

Never the less  t h e r e  Is a n o t h e r  n o t i o n  of s t a b i l i t y ,  e q u a l l y  b a s i c  fo r  
r - - i  

s t a t i s t i c a l  m e c h a n i c s  wh ich  Is the  no t i on  o f . - . - s t a b i l i t y ,  we a r e  g o i n g  to d e f i n e  

now : 

Le t ' s  ca l l  ~ the  g r a n d  c a n o n i c a l  p a r t i t i o n  f u n c t i o n  for  a C o u l o m b  sys tem at  a 
¢.J  

. is.-, - s t a b l e  c e r t a i n  " t e m p e r a t u r e " ~ , a n d a c t l v i t y z  Then  we wi l l  say  that  the sys tem 

if 
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(3) 

The situation Is therefore the following : 

Classical case 

Classical Coulomb gas are not H-stable for d>~2. 
r - - i  

Classical Coulomb gas are - -s table ( in some Interval 

of temperature and In some appropr iate meaning) In d=2. 

Classical Coulomb gas are not L.~ -stable In d=3. 

Quantum case 

d=3 : If t he  n e g a t i v e  c h a r g e d  p a r t i c l e s  a re  f e r m l o n s .  H - s t a b i l i t y  Is sa t i s f i ed  

(Dyson-Lenard)  ; 

If al l  the part icles are bosons, there Is no H-stabi l i ty. 

Of course an ultraviolet cutoff Implies H-stabi l i ty and also ~ -stabi l i ty.  

In the  s e c o n d  par t  of my ta lk  I sha l l  be I n t e r e s t e d  m a i n l y  on the  p r o b l e m  of the  

-stabi l i ty  for the classical Coulomb gas In d=2. 

For  th is  aspec t  the d=2 case  Is the  most  I n t e res t i ng  o n e .  as on l y  In th is  

case  It Is p o s s i b l e  e i t h e r  h a v i n g  o r  no t  hav ing  ,~, - s t a b i l i t y .  d e p e n d i n g  on the  

value of ~'. 

The r eason  of tha t  Is tha t  the C o u l o m b  p o t e n t i a l ,  fo r  d=2.  Is l o g a r i t h m i c .  

This  Imp l ies  that  the Gibbs f ac to r  d i v e r g e s ,  due  to the a b s e n c e  of H - s t a b i l i t y  as a 

power ( fo r  some con f igu ra t i ons ) .  This d i ve rgence  can be compensa ted  by the en t ropy  

f ac to r  ( w h i c h  e s s e n t i a l l y  coun ts  the  n u m b e r  of c o n f i g u r a t i o n s  o f a c e r t a l n t y p e )  

provided .8 Is not too large providing therefore the u.v .  stability. 

This m e c h a n i s m  v i c e - v e r s a  c a n n o t  be p r o d u c e d  In d=3 as in th is  case  the  

C o u l o m b  p o t e n t i a l  as r ~ : >  0 d i v e r g e s  as i / r  p r o d u c i n g  a Gibbs f a c t o r  d i v e r g i n g  

logar i thmical ly and therefore the entropy cannot compensate Its d ivergence. 

Once the  c o m p l e x i t y  of the  d=2 case  Is c l e a r  : l e t ' s  r e m i n d  wh ich  a re  the  

known results : 



304 

z 
"2_ -stabi l i ty has been proved by Frohllch [ 2 ]  for o< =- / (3e  ~ < 4Tf- 

S u b s e q u e n t l y  th is  resu l t  has been e x t e n d e d  In a c o u p l e  of pape rs  by ( B e n f e t t o ,  

G a l l a v o t t l  and N l co lo )  and by (F.  N l co lo )  In the i n te r va l  of a 2 : [ 411 ,8 l l ]  In the 

fo l lowing sense.  Neg lec t ing  the Inf rared prob lem or If one prefers  In a ' f ln l te vo lume or 

In the  Yakawa gas case ,  the u. v. s tab i l i t y  of the Cou lomb  gas is st i l l  t rue up to 8 I I - e  

p rov ided  we modi fy  the par t i t ion  funct ion in an app rop r i a te  way sub t rac t ing  to it some 

(constant)  counterterms. 

The phys i ca l  i n t e r p r e t a t i o n  of th is  p h e n o m e n o n  is the f o l l o w i n g  : be tween  

411 and 81I t he re  Is an In f in i te  s e q u e n c e  of t h r e s h o l d s  g tven by the  f o l l ow ing  

expression : 

2 

(4) 

which co r responds  to par t ia l  co l lapse  of the Cou lomb ( or  Yakawa) gas In the fo l lowing 

s e n s e  : 

for  a 2 ( [ 4 n ' .  611 ) -- [ a 22, a24 ) the gas par t ic les tend to co l lapse forming mic roscop ic  

d i p o l e s ,  t h e r e f o r e l n  t h l s t e m p e r a t u r e l n t e r v a l l t  can  be t h o u g h t  as a g a s o f f r e e  

charges In a sea of microscopic dipoles, of Infinite density ; 

fo r  a 2 ~ [6] 'L .2orr} = [ a 2 4 .  a2s~ the  p a r t i c l e s  tend  to fo rm a l so  m l c r o s c o p l c  
- 3 - ,  

q u a d r l p o l e s ,  the par t i t ion  funct ion desc r ib ing  t he re fo re  a gas of cha rged  par t l c les  In 

a sea of d lpo les  and quad r i po les .  It is t he re fo re  obv ious  how to ex tend thls a rgumen t  

to every Interval [ a 2 2 n  , a22(n+O ) . 

As n - - . > 0 0 1 n  (4 )  a22n  > 811 and t h e r e f o r e  above  th ls v a l u e  a l l  the poss ib l e  

mul t lpo les  are  fo rmed,  we are in a s i tuat ion of comp le te  co l lapse,  the par t i t ion funct ion 

diverges and we have not any more a statistic description of our collapsed system. 

These  In f in i te  s e q u e n c e s  of pa r t i a l  c o l l a p s e s  a re  I n t e r e s t i n g  for  many  

reasons : 
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a) In t he i r  own as d e s c r i b i n g  a sho r t  d i s t a n c e  p h e n o m e n o n  of the (:1=2 C o u l o m b  

(Yukawa) gas. 

b) As a renormallzatlon phenomenon in the associated Sine-Gordon field theory. 

c) As these  t h r e s h o l d s  a p p e a r  a l so  to p lay  an i n t e r e s t i n g  ro le  in the  i n f r a r e d  

problem. 

Le t ' s  t h e r e f o r e ,  be fo re  d i scuss ing  a ) ,  b ) ,  c) in some  d e t a i l s ,  d i scuss  some  

general i t ies of the infrared problem• 

The infrared problem 

The bas ic  resu l t s  c o n c e r n i n g  the t h e r m o d y n a m i c  l im i t  a r e  due to L leb and 

Lebow l t z  [ 4 ] ,  wh ich  e s s e n t i a l l y  p roved  In a beau t i f u l  p a p e r  the  e x i s t e n c e  of  

t h e r m o d y n a m i c  func t i ons ,  a l t hough  the Cou lomb  po ten t i a l  d e c r e a s e s  so s low ly  as Y--~m 

• This is essent ia l ly  due to the sc reen ing  proper t ies  of these systems ( quantum case ) .  

(Neutral i ty  assumption Is requi red) .  

In the classical case the more Interesting results are the foi lowlng : 

a) Debye aoreenlng 

This  resu l t  is t rue  for  c l a s s i c a l  C o u l o m b  sys tems  in d = 2 , 3  and has been  

proved in a ser ies  of paper  by Brydges and Brydges and Federbush  ( see  a lso Imbr le)  

I S ] .  

This result has been proved for ~.<< and activity Z<< (di lute gas) .  

The s o r e e n i n g  man i f es t s  i t se l f  In the fac t  tha t  the  c o r r e l a t i o n  f u n c t i o n s  have  

exponent ial  c luster propert ies. 

The Dabye  s c r e e n i n g  has the e f fec t  tha t  e v e r y t h i n g  works  as if t he  C o u l o m b  

i n t e r a c t i o n  d e c a y s  e x p o n e n t i a l l y  as P.-~00, " t h e r e f o r e  the  e f f ec t  of the  Debye  

screening is that of producing a mass', in field theory language, in the propagator• 

This  s i t ua t i on  d e s c r i b e s  a "phase"  of the  d=2 C o u l o m b  gas  wh i ch  is c a l l e d  

p l a s m a  phase ,  when  the p a r t i c l e s  fo rm a p l a s m a  and tend  to s c r e e n  one  each  

other,  
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If we go  to low t e m p e r a t u r e  ( a > > )  t h e r e  Is a Bc f in i te  above  wh ich  the 

Coulomb gas is present in different phase : the dipole phase. 

b) The Koesterl l l tz-Thouless phase 

The d i p o l e  phase  is c h a r a c t e r i z e d  by the  fac t  tha t  the p a r t i c l e s  tend  to form 

the "neu t ra l  mu l t i po les "  among  which neut ra l  d ipo les  may be expec ted  the dom inan t  

conf igurat ions of the gas. 

The C o u l o m b  gas In th is r e g i o n  of ~' and Z Is t h e r e f o r e  s i m i l a r  to a d i po l e  

gas. 

It has been p roved  by F r o h l l o h  and S p e n c e r  [ 6 ]  tha t  d i po l e  gas have 

c o r r e l a t i o n s  wi th power  law decay  I . e .  Oebye s c r e e n i n g  b reaks  down at low 

temperatures. This Is proved to be true also for the Coulomb gas. 

T h e r e f o r e  in th is phase ,  o f ten c a l l e d  the K o e s t e r l l t z - T h o u l e s s  phase ,  we 

have a power decay for the correlat ion functions. 

The e x i s t e n c e  of th is  phase  has been  p roved  for  .8>> but  the  c o m m o n  w isdom 

says that  the t e m p e r a t u r e  at  wh ich this t r ans i t i on  takes p l ace  c o r r e s p o n d s  to (=2 

= 81I. 

Now tha t  a d i p o l e  phase  ex l sb i s  due to the fac t  tha t  the  Gibbs f a c t o r  fo r  

a d i p o l e  of l eng th  I tends  to 0 as I - ~ > 0 ~  wh ich  means  tha t  If B I s  l a rge  e n o u g h  

the a v e r a g e  va lue  of I Is f in i te  and t h e r e f o r e  a r e l e v a n t  we igh t  have the " f in i te  size 

dipole" configurat ions. 

This  is not  p o s s i b l e  In d=3 wh ich  a g a i n  Imp l i es  tha t ,  ~ ~', a l l  neu t ra l  

mult ipoles are unstable. 

Le t ' s  now sho r t l y  r eca l l  how the  e x i s t e n c e  of the  K o e s t e r l i t z - T h o u l e s s  

transit ion Is proved by Frohl lch and Spencer In [ 6 ] .  

The proof of the K.T. transit ion Is based on the following facts : 

a) The o r d e r  p a r a m e t e r  for  the C o u l o m b  gas wi l l  be the ave rage  of the f r a c t i o n a l  

charge densi ty ~.  6co¢ ~(o) ~ ( in the Sine Gordon formalism) 

The existence of dif ferent phases will mean that 

< jO~ (T~(O~)~> ~ 0 (0(<-'1) In the plasma phase 
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< ~-~;°¢~(°) > = 0  In the dipole phase 

b) It is proved that for d=2 at any ~' there is the following lower bound 

< > >. ) 

(Park-Frohl lch)  [ 7 ] .  

c) For  sma l l  ,8 we have the ex]0onential d e c a y  of t r u n c a t e d  c o r r e l a t i o n  f u n c t i o n s  

(8rydges)  [ 5 ]  therefore : 

ion(,F@) - ~0>)> 
~ ~ 0 exponential ly 

Ill--> oo 

d) b)~-c) Imply that 

< e <;<~ (~(') - <~(o)) > ~ < .e, > ~o 
Ix I ->~ 

e) For B large Frohl lch and Spencer prove that 

~'~ (~c~>- ~ o ~ )  
< e. > ~ csl- 

f) e) implies that ~ - ~  > - - . 0  for ~'>>. 

The next  r esu l t  I wan t  to d i scuss  has been  c o n j e c t u r e d  and r e c e n t l y  
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proved by G. Gallavotti. J. Lebowitz and myself [ 8 ] .  

To d e s c r i b e  It In deta i l  we have to In t roduce  the genera l  fo rma l i sm with which 

we are going to study the Coulomb gas in d=2. What can we say at this moment is the 

following. 

A l though 8[ ' [ is.  in a sense we have to spec i fy ,  the s tar t ing  tempera tu re  for 

the K. T. phase the Interval [4H. 813'] seems to represent  a region of the phase space 

where the Coulomb gas is In a sort of mixing phase between the pure plasma end the 

pure mulflpole one ; this means the following. 

We can Identify in this interval an infinite sequence of thresholds 

.2. 

(5) 

( e x a o i l y  the same as for the u l t rav io le t  p rob lem I) which have the fo l lowing 

properties : 

For a 2 > 8[7 the gas (neutral) Is formed by all possible multlpoles (of finite size). 

When a 2 < a 2 2 n then only the mult lpoles made bye< 2n part ic les are stil l stable while all 

the remaining ones are broken. 

For a 2 <~Q2 2 : 4 ~ t h e r e  are no s tab le  mu l t l po les  and we are In the pure p lasma 

phase, 

What I am go ing  to d iscuss  In the fo l low ing  Is the ~ - s t a b i l i t y  in the 

Interval [411". 81"[) ( ul t raviolet  problem) and the existence and proper t ies of this mixed 

phase region In the Infrared problem. 

To do that  we have f i rs t  of al l  I n t roduced  the S leger t  t r ans fo rma t ion  to 

transform this problem in a field theory problem. 

2 - THE SINE GORDON TRANSFORMATION 

Let 's  exp lo i t  the connex ion  between the Cou lomb gas and the Sine Gordon 

theory. 
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Let 's  de f i ne  a gauss lan  random f ie ld  p ( ~ ) ,  f o rma l l y ,  as a f ie ld  with 

covar lance C(~,'~?) and let's consider the following partition function : 

.~ k j~ :̂ cos (x ~p(~;) : d~  
(6) 

whe re  0( l = ~ e  z. 0/~ is the gauss lan  m e a s u r e  a s s o c i a t e d  to the c o v a r l a n c e  

is the "coupling constant" of the theory. 

Expanding ~z.~ In power of ~, we get : 

where : ~ ~ ~(~):  a oo ~__ 6~() ~ ~ '~' ~{~) (e) 
• % ~ .  = < °-'o_,~(~ ~=o > 

It is easy to realize that : 

< ' e .  
c ~  ¢(~,~ _(x Z ~ o  7 C(~:, 

• . . - ~  : > =  e.  ; ~  ~d') (9) 

and therefore 

IA~, '~ ~, " ~L ,  (10) 
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wh i ch  is the p a r t i t i o n  f u n c t i o n  for  a c h a r g e d  gas  ( o f  c h a r g e s  +e) w h o s e  p o t e n t i a l  

is: 

= c (11) 

therefore If C Is ( - A ~  - I  It follows that as 

~ i~-~I 
(12) 

Is just the Coulomb interact ion. 

This S ine-Gordon field theory descr ibes the Coulomb gas. 

This Is s t i l l  f o rma l  f rom the s i de  of the  f i e ld  t h e o r y  as(-A)- I Is  no t  a wel l  

d e f i n e d  c o v a r l a n c e ,  ln fac t  __.~ In iI~,,li_ d i v e r g e s  bo th  when  

I ~-~7l ~ o  a~i I~-'~I ~> oQ 

and we n e e d ,  t h e r e f o r e ,  to i n t r o d u c e  some  r e g u l a r l z a t l o n s .  At  th is  po in t  It is a l so  

c l e a r  tha t  we need  a r e g u l a r l z a t i o n  to c o n t r o l  the  s h o r t  d i s t a n c e  b e h a v l o u r  and 

another  one to control  the long distance behavlour.  

Th is  can  be o b t a i n e d  in d i f f e r e n t  ways  a c l e a r  and  i n s t r u c t i v e  one  wi l l  be 

fol lowing : substi tute # / p  "z" , associated to ( A  -I)  with the 

~'~-°'~)Cr) = ~ ~ ~'> ~ (13) 

which c lear ly reproduces 4/p  ~ wher~ (~---pCO and H---~ o0 

Let's make the fol lowing remark : 



311 

(--,Q, N) - ~ ' -Q 
C t~,~/~ "~ Q,- =(,-~1 as I~-'~11>> (14) 

,2 ~T 

Which imp l ies  that  ~' p lays the ro le  of a mass mak lng  the long d i s t ance  b e h a v l o u r  

decay ing exponent ia l l y  [ s o m e  d imens iona l  constants have been se t= l .  In o ther  words 

[~'~] : [L"] ) L ~ J  : Lc'] ]. 
whi le  ~ plays the role of a cutoff stabilizing the u.v.  behavlour. 

The C o u l o m b  gas wi th the r igh t  shor t  d i s t a n c e  p r o p e r t i e s  and long  d i s t a n c e  

properties are obtained when we remove both the cutoffs but one should accept that." 

If one  wants  to s tudy the sho r t  d i s t a n c e  b e h a v i o u r  of the gas ( u l t r a v i o l e t  

p r o b l e m ) ,  it shou ld  be enough  to remove  the u l t rav io le t  cuto f f ,  if one  wants to study 

the long distance behavlour it would be enough to remove the Infrared cutoff. 

T h e r e f o r e  to s tudy the  u l t r a v i o l e t  p r o b l e m  we sha l l  keep ~ ' - ~  f i -  

xed ( for Instance ,/=1) and we shall study the following partit ion function 

( 1 5 )  

L~,J/I 
where (~0 Is the Gausslan field with covar lanoe 

I Jp,(~-~2J i i 
(16) 

V i ce -ve rsa  if we want  to study the t he rmodynamic  l imi t  we wil l  keep fixed the u l t rav io le t  

cutoff ~N (=1 for instance) and we will perform the limit ~ ' - ~  
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3 - THE ULTRAVIOLET STABILITY FOR or ~ E !'4]'I,8n11 

The problem Is reduced to prove that: 

_ c~r I ^ l  (~) c ~ r  IA I 

(17) 

~.~) 
with C s t N - i n d e p e n d e n t "  o r ,  if t h i s l s  no t  t r ue ,  how one  has to mod i f y  ~_At0make 

th is  s t a t e m e n t  t rue .  This is t h e r e f o r e  a t yp l ca l  p r o b l e m  of  f ie ld  t h e o r y  and wi l l  be 

discussed using the renormal izat lon group ( R . G . )  methods, 

Be fo re  do ing  tha t  we want  to d i scuss  f rom a s t a t i s t i ca l  m e c h a n i c  po in t  of  

v iew,  v ia heur is t ic  a rguments ,  the appea rance  of the thresho lds  a2n cor respond ing  to 

part ial col lapses (see (3)). 

Le t ' s  go back  to the  pa r t i t i on  f u n c t i o n  w r i t t e n  In the  g rand  c a n o n l o a l  

formal ism 

~:p, ~,) Z_ a" F__ ~ , .  a~,., e ~"J " 0  

(18 )  

where 

(19) 

and ~,v" ~ ~-~' 
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We can In terpre t  the in t roduc t ion  of this cutoff  as the assumpt ion  that the par t i c les  have 

l i n e a r  s ize  of o r d e r  ~,V . C o l l a p s i n g  p h e n o m e n a  a r e  e x p e c t e d  In the l im i t  : 

Le t ' s  c o n s i d e r  now the te rm of the  g r a n d  c a n o n i c a l  p a r t i t i o n  f u n c t i o n  wi th q 

= p = n . (q  is the  n u m b e r  of - e  p a r t i c l e s  and  p tha t  of the  +e p a r t i c l e s )  and  
7(14) 

c o n s i d e r  the  c o n t r i b u t i o n  to z=A~,?.~ f rom the  c o n f i g u r a t i o n s  In wh ich  any  +e 

p a r t i c l e  is " n e a r ' .  at a d i s t a n c e  of o r d e r  ~ .  to a c o r r e s p o n d i n g  - e  p a r t i c l e ,  t ha t  

Is d ipole conf igurat ions where each dipole has momentum of order  ~ ' ~ /  

The energy of these conf igurat ions is approximately:  

~ . _ ¢ ~  c'% :_~,_h,e:/:~, ,  , i , , e , ,  
(20) 

and the contr ibut ion to the canonica l  part i t ion function Is: 

~_A (NI gz'~ ~" • _ 

_ ~ ~ ( ~ - ~ 4 r O  
- ( I ^ l  

( 2 1 )  

t he re fo re  this term looks l ike a con t r i bu t i on  to the g rand  c a n o n i c a l  par t i t i on  func t ion  of  

a f ree  d i p o l e  gas  of  a c t i v i t y  ( ~, ~ , t J (~+ , - i )  ) and  wi th d i p o l e  m o m e n t u m  of  

o rder  • e 3'-iV The activity 

(22) 
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goes  to co as N-->oo and this means  that  the d i po l e  c o n f i g u r a t i o n s  a re  the 

mos t  i m p o r t a n t  ones  ; m o r e o v e r  the d i p o l e  l eng th  ~ o as t V - - ~ o a n d  the 

f ina l  resu l t  Is tha t .  as the dens i t y  of the d i p o l e  gas is ,~ and the a v e r a g e  

) t~ )  )"~'lth ra t io  be tween  the d i s t a n c e  be tween  two d i p o l e s  is of o r d e r  ( ~hp 

average dipole length and the average dipole distance is 

~,-,v ~,,~'-c~-j = ~,,~'(,-~-~ o( ) 

Vdz<~)T , wh ich  m e a n s  tha t  we can c o n s i d e r  t hese  d i p o l e s  c o n f i g u r a t i o n s  as 

d e s c r i b i n g  a f ree  d i p o l e  gas of i n f i n i t e  ac t i v i t y .  This a r g u m e n t  has an obv ious  

g e n e r a l i z a t i o n .  We can cons ide r  a neu t ra l  mu l t l po le  made  by 2n p a r t i c l e s , ~  be ing 

the d iameter  of It ( i ts l inear size). Its energy will be approximately: 

,7.. ~ ~ i ' i  

(24) 

- -  . 2 , 2 . * v 1 - 1  
The phase space of this 2n-mul t lpo le will be: ~,u~) and Its contr ibution to Z 

ii  

- ( a ~" ~ " ~ -  ) i~l 

( 25 ) 
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Therefore 

(26)  

These ( 2 n )  - n e u t r a l  c l us te rs  s ta r t  to g ive  an I m p o r t a n t  c o n t r i b u t i o n  when  t he i r  ac t i v i t y  

as A/--) ~o d iverges end they do not rea l ly  cont r ibu te  when as IV---> oo 

it tends to 0 . 

We can there fore  conc lude : 

we have co,,eps. In 2.-o,uster. when ~ ~ :  ~ ( ~ - A ~  wh,oh wes 
R 

the  resu l t  s ta ted  In the i n t r o d u c t i o n ,  of c o u r s e  a l so  the c o l l a p s e  in e l l  s m a l l e r  c l us te r s  
J. 

takes p lace when 0 < ~  ~Xg~ . 

Th i s  Is an  heur,  i s t i c  a r g u m e n t .  Wha t  Is r e a l l y  r e a s o n a b l e  Is t h a t  t h e s e  

t h r e s h o l d s  p l ay  r e a l l y  e r o l e  In the  s t u d y  of  t he  s u p e r r e n o r m a l i s a b l l i t y  o f  t he  S ine -  

Gordon theory,  

The u l t rav io le t  stabll.lty of the massive S i n e - G o r d o n  f ield the.ory [ 3 ]  

It amounts  to prove the fo l lowing Inequal i ty  

_ c~r I^1 , v ( ~ )  

where  

and ~!K are constants  ( f i e ld - Independen t )  d iverg ing  as ~ ; ; , o o .  

The t e c h n i q u e  used  to p r o v e  I n e q u a l i t i e s  ( 2 8 )  Is t ha t  o f  t h e  ( R . G . )  In 
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the form we used it to study the u.v.  stability of the 

Let's sketch the general  Ideas: 

we write 

~34 theory [ 9 ] .  

c ( ~ l ~  • "f I t~ p)- 

A/ 

K---O 

( 29 ) 

T h e r e f o r e  we can th ink  to (70 as a sum of N I n d e p e n d e n t  g a u s s l a n  f ie lds  each  

one with cova rance  C (~,'~) 

(30) 

(K) ,, (~) 
I n s p e c t i o n  of the o o v a r l a n c e s  shows tha t  the f ie lds  ~ a re ,  a p a r t  a 

rescal lng,  equal ly distributed 

~ L  
(31) 

M o r e o v e r  they  have the f o l l o w i n g  n i ce  p r o p e r t l e s  wh ich  make  s i g n i f i c a n t  t he l r  

Introductlon : 

a) they are approximately constant on a scale ~ / - K  

b) t hey  a re  a p p r o x i m a t e l y  i n d e p e n d e n t  on the same  sca le ,  wh ich  means  tha t  the i r  

covar lance decays exponential ly on this scale. 

The m e a s u r e  Jff(~f[¢~]) Is e q u i v a l e n t  to the p r o d u c t  of g a u s s l s n  

measures with respect to the fields ~(t ~lK) 

(32) 
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The b a s i c  i dea  of the  ( R . G )  is ,  h e r e .  the  f o l l o w i n g  o n e  : t r y  to c a l c u l a t e  the  

par t i t ion funct ion i te ra t lve ly  pe r fo rm ing  the In tegra t ions  on the d i f fe rent  f ie lds one  af ter  

another.  

Th i s  p r o g r a m  wi l l  w o r k  If e s s e n t i a l l y  we a r e  in a s i t u a t i o n  a p p r o x i m a t e l y  of 

this kind ; the fol lowing Inequal i t ies hold : 

(33)  

with (K) : the effective potential  ( to a fixed o rder  In ~ ) and  _~  : . _  IA I 

with the property : 

I~---0 
< v0o (34)  

and of cou rse  V ~) • ()u) VAjo 
If ( 3 3 )  IS t rue  fo r  any  K 

that 

6 (K )sa t l s f y l ng  ( 3 4 ) ,  we can  c o n c l u d e  

, Csr I^1 Cst i^ l  
~ (35) 

which is our  desi red result. 

Le t ' s  s h o w  how to p r o v e  ( 3 5 )  b e l o w  41~= Q2 1, w h i c h  is e a s y  e n o u g h  and  

how prob lems ar ise as soon as we overcome this first threshold:  

Remember ing the scale propert ies of the f ields 

(36) 

we can  a lways  I n t e g r a t e  wi th r e s p e c t  to the  m e a s u r e  P ( d Z )  ; In t e rm  of  2 VA, o 
appears : 
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A 

A 

(37)  

r emember i ng  that 

CwJ/o) : ~ ;  (38)  

There fore  the ef fect ive coup l ing  constant  Is In this case:  

($9)  

and the In teract ion Is over  a reg ion ~' /~ 

Equ .  ( 3 9 )  I s e s s e n t l a l l y t h e a s y m p t o t l c  f r e e d o m  of  t he  t h e o r y  ( o b v i o u s  s i n c e  

the theory  Is super renorma l i zab le )  ; in fact ~ .  ~ >  o as h/--~ 0o p ~,.t, < ooTT. 

Equ .  ( 3 9 )  a l l o w s  us to p r o v e  ( 3 5 )  e a s i l y  fo r  a 2 < 4 I I .  L e t ' s  c o m p u t e  

with the cumu lan t  express ion : 

-v T 

(40) 

~ J  

with ,he usual notations .et's assume .--1 then ~ o , ( / : }  = ~ 7  0 
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there fo re  : 

l e v°'̂  (41)  

is p ropor t iona l  to ~tJ iA I  

(42)  

and if 0 (2<  4-12 

7- s £2 
K ~ o  K = o  

< +~o (437 

Remark  

T h e  p r o o f  t ha t  K A is p r o p o r t i o n a l  to  IA} is s i m p l e  in t h i s  c a s e  

and m o r e  t e c h n i c a l  If a2>411 ; ou r  p r o o f  has b e e n  c a l l e d  " I n t e g r a t i o n  g r i d  t e c h n i q u e "  

An~ehaS been careful ly discussed In [ 9 ]  [ 1 0 ] .  We wonIP discuss It, expl l¢l tely, 

The  r e s u l t s  ( 4 1 ) ,  ( 4 2 )  and  ( 4 3 )  s h o w  us t ha t  t h i s  c o m p u t a t i o n  d o e s  n o t  

p roduce  the des i red es t imate  If a 2 = 4[ I  + c. 

The o b v i o u s  i dea  w i l l  t hen  be  to  c o m p u t e  t he  I . h . s .  o f  ( 4 0 )  In a m o r e  

prec ise way,  that is t runcat ing the cumu lan t  express ion  at h igher  orders .  

Let 's suppose we go up to the second o rde r  In X obta in ing :  

wil'h _ ^  = C ~ ~'2'JIAI c 

there fo re  if 

a) C is a constant  un i form In N, 

b) "~---~ - 4  ~ . 0  <=> o<Z ~ i_.~ iT - o¢ 5 
4-TF 3 

(44)  
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we have aga in  a s u m m a b l e  r e m a i n d e r .  Unfor tunate ly  s ta tement  a)  Is not true as we see  

very easily: 

le t 's  observe that C wi l l  be p ropor t i ona l  to the maximum value of V  ̂ for  

a gener i c  I~, as the rema inde r  R~ K) wi l l  be obta ined es t imat ing  the fo l low ing  

expression: 

b'C ~ t- : "~"~ (46) 

and it. is clear that pxA)(K ~ C c ,."Yf , ~ [ ~ j v A ,  K) I 
J - - ' ~ K  

There fo re  It is needed that.  prov ided ~p~;) and ~/# be e n o u g h  r e g u l a r . v  A ) 

can be bounded uniformly In N. 

This unfortunately does not happen as a simple computation gives: 

FVT / ,~t (<e,) 

• - : , o , ~ ( f c t )  - ? c ~  j :  

A~A 

( 47  ) 

L e t ' s  c o n s i d e r  the  s e c o n d  t e r m  wh ich  Is the  d a n g e r o u s  o n e  a n d  c o r r e s p o n d s  to a 

neutral  contribution ; an easy est lmate gives: 
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( 4 8 )  

and It Is clear that If ~2>4~']', C Is not unlformly bounded In N. 

The re fo re ,  as th ls  C en te rs  In the r e m a l n d e r ,  we canno t  r e p r o d u c e  the 

c o m p u t a t l o n  for  ~2<4r i  In the ~=>4[ [  case Just I nc reas ing  the o r d e r  of  c u m u l a n t  

expansion. 

Here It Is, neve r the less ,  easy to see a way out.  In fact  l ook ing  at the 

expresslon of ~V~ (~:) o.:-o (the third term of .^('~) ) 

( _ _ 

It is easy to realize that all the problems arise as 

~" ~-- '(~' ~))) behaves as 

"~ ~ ~'/-~-~/ 3. ~ ~ ¥ - ~ e  
(50) 

which is divergent as /V-.-->oo if G2>41Z. • [~ ]  [.<K3\ 
They will be drastically different If Instead of . c . ~ ( ~  (~)_ ~(,~)): 
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we had : C O S =  ~ ' ~ '  (~3 - ~ ( ,~ )  ) _ 4  " . 

In this case due to the fact  that  ~o/(K]Is H o l d e r - c o n t i n u o u s  of o r d e r  I=F-, 

(~>0) .  which means that. with probabil ity 1. given ~ s K . ;  

~ such that 

(51) 

r e m e m b e r i n g  that  the es t imates  (50)  canno t  be s lgn lcan t l y  Improved In the reg ion  

l~j-~l,~ ~ If we perform the substltullon 

- '/" t '7) ; :  - - ~  ' c o s ~ L ~  t~)-So~-'-~) 3 ) - .t : (52)  

then 

z (At) =~('<) 

WQ o - ' - '~ Q:-0 -- = e }:cos~( Z l ~  C~ ,l) - ' t  : ( 58 )  

~ x A  

which satisfies (provided the field (p[~K2 be regular) the following estimate: 

,'v (K) ,x,'- K ~zC(~J ' " 

e : K  

,- /~ 6 (~-*~K (~;'~^)) a ~ E ~" 

(54) 

with C N-Independent which was exactly the result we wanted. 
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The p r e s c r i p t i o n s  ( 5 2 ) .  ( 53 )  seem an *ad hoc"  one  but  It Is no t  so.  In 

fact If. instead of starting from the Interaotlon 

~,o = ~,~ :~os~,f f '  ( ~ :  off~ (55) 

we would have started from the following one: 

"- vA, 0 -- ( 56 )  

w h e r e  Is now the t r u n c a t e d  e x p e c t a t i o n  wi th r e s p e c t  to the  g l o b a l  f i e ld  

and not to a s ing le- f requency field, In the expression of ~A ~KJ (K) ~'. (K) 
( s e e  e q . ( 4 , ) )  we wOuld have  go t  W~= o I ns tead  of VVQ= o The 

,-(~) 
fac t  tha t  add ing  t h e c o u n t e r t e r m  ( c o n s t a n t )  L~ IS e q u i v a l e n t  to the  p r e s c r i p t i o n  

prevlsouly discussed Is easi ly proved • In fact: 

(~v) 

^ {t~,) C(t~ ' 

~z C (ft~) N-, / 42 [ ~ d~  (e .  '~'"} ~cle/, ,  ~ (,CKJ 
: _ e -  (57) 

V~. (K) 
and the  f i rs t  pe r t  of the  r. h . s .  of ( 57 )  jus t  m e t o h e s  t o g e t h e r  wi th  (~=o g l v -  

~z(K) Ing rise to Q-_o 

It c a n  t h e r e f o r e  be p roven  tha t  the  s u b s t r a c t l o n  of th is  e o u n t e r t e r m  jus t  

a l l o w s  us to ge t  a g a i n  i n e q u a l i t i e s  ( 3 6 )  p r o v ~ b s t i t u t e d  by VA (N) , in 

the Interval of e 2 : V, (~) /~ o 

[ " " ,  : [ ' # , ' d )  (5,, ,  
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The In te res t i ng  and non t r iv ia l  th ing is that  th is p r o c e d u r e  can be I te ra ted  to reach  

larger values of a 2. 

We have the fol lowing result : let 's define: 

z 

Each time a 2 overcomes an even n=2K threshold the corresponding oounterterm: 

- .~K~ " ^ ,o ; . Z K }  (60) 

has to be substracted. 

Each t ime  a = o v e r c o m e s  an odd n=2K+ l  t h r e s h o l d  we d o n ' t  have  to aubs t r ac t  

any oounterterm but only to perform the ¢umulant expression up t o  the order : 21(+1. 

The I n t e r p r e t a t i o n  f rom the po in t  of  v iew of s t a t i s t i ca l  m e c h a n i c s  Is, In our  

opinion,  the one discussed before. 

Let 's  make some remarks  which seem to me necessa ry  to cons t ruc t  comp le te l y  the 

technical  part of this result: 

Remarks 

a) As in ~ ;  - t h e o r y ,  we have to a s s u m e  tha t  (pL"K~s r e g u l a r  ( H • l d e r - C o n t . ) .  

Then the need of regularity plays the role of the need of boundedness In ~)~" 

This  has to be a c h i e v e d  to p rove  the  uppe r  bound  and t h e r e f o r e  we have 

to exclude the regions (smal l )  where this does not happen. 

b) An Impor tan t  and techn ica l l y  comp l i ca ted  part  is to prove that  the r e m a i n d e r  of the 

c u m u l a n t  e x p a n s i o n  Is real ly~l /~, jwhlch m e a n s  tha t  It has the  r i gh t  d e p e n d e n c e  on 

the volume. 

This  Is no t  easy  to o b t a i n  : It Is p o s s i b l e ,  e s s e n t i a l l y ,  b e c a u s e  the 

e f f ec t i ve  p o t e n t i a l  a l t h o u g h  non l oca l  Is n e a r l y  l oca l  and  is p roved  wi th  a t e c h n i c  

which has been cal led " integrat ion grid technic ' .  

c) It cou ld  be i n t e r e s t i n g  to e x a m i n e  how the  d e f i n i t i o n  of  s t a t i s t i ca l  m e c h a n i c s  

observables change above 41I to sustain our Interpretations. (See F. Nicolo [ 3 ] ) .  
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Some technical remarks on the ultraviolet stability proof 

Let's discuss separately the lower and the upper bound. 

Lower bound (a2>411) 

Let's make the following observation : let's assume we have defined 

A V~ ~) \I ~3 c ~ )  
= ~- "OiA - ~.Z, ( I )  

I 
• o(14 

A (2) 

T h e  I d e a  Is that :  

>. , , ,  

where "A - ~ ~-'-'~ "C"'~ ~ 

therefore 

.,^ ~ P(d~") .^ 

I ~ (~*~)13 
has to be bounded by Y~X I v^ : the problem is the following: 

v~ ( ,  

^ : .~,^ -..~,^ *..Q~o , Q-o 

, ( ~ ÷ , )  
and to bound It as we need we have that  W,.~ o has to be bounded  which Is 

t rue p rov ided  the f ie ld  ~/~ be H o l d e r - c o n t i n u o u s  wi th coe f f i c i en t  B . This 

is t rue In p robab i l i t y  with p robab i l i t y  1 - ( ( B ) ,  ( ( ( B )  - - > O a s B ~ >  ) but here  we 

want  th is p rope r t y  for  any samp le  f ie ld  ~0/-~<~*]. As we are  c o n s i d e r i n g  the 

lower bound we can set characterist ic functions. 

Therefore the lower bound has the following form: 
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as . L.~ ~-,1 x~~-'C~ ) 'x~(~ ~-~]) >f ~.e.-'C~.~-~'-'])1~,C~,~)) 

VJ ~) 

We have to estimate 

end then prove that It Is possible to Iterate. therefore that 

~-,(,¢[_~-,]) .~ ~7 c~)) ,~ ~(,~,~,) ~ >, ~ - ..,, 

V KF-iOj~,--- ,N t .  

For the upper bound we argue in this way 

Is "rough', 

Let's define AVA (K) =- ,^\-~= 
where [~(~Ya) IS the region where (~(K)iS rough and 

m 

(corridors around It). 

Let's prove that 

a) ~/~(~J)" < ~ (~ )  "' 

- k ' (~)  C ~(:K) {~Kz ~/2K { /~RK 

(H,:  ; e ) ~ -  v,, . . . , ,  

the regions where the sample (t0 [~<K] 

A 

~ : RK U 

a) It Is true by "posltlvtty" of ' "c~=o 

b) It Is more complicated but It still uses the posltivlty of W ( 

c) It Is the more hard part to prove (see [ 3 ]  for a careful discussion). 
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Let 's assume t h a t a ) ,  b ) ,  c) have been Proved. then one proceeds In that 

way: _(:,.~) 

Let's define QN-1 : pavement of tesserae of side size~'and 

R~/_f "- ~ I  (/'~(^l-Ol'l~-'roug h" In I~,- i  ).~ /~--- 4f-/qc" ) 

R~., c d4~.i R.., 

where RN_ I are an arbitrary family of tesserae c (~_~ 

R~.~ c d).N. i ' 

• e.. ca~'-o ~,,,~, ~'~c'~-'~f~',.,n^ I 

2. #4 Ca/-l J • zc,,.,)i %.,n^l" ( /A,? h ~ 6,,., ,y b,., ~ .,,, &,,., jP,-/". %, ,,<., ~Y__._ e. 

as. using e) .  

• E ~ - O  . , ,  . ^ . 

we have 

RN., CQ,.. -I 

and this sum Is cont ro l led using that the regions where the f ie lds ere "rough" have e 

small probability. 
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4 - THE INFRAREO PROBLEM 

Genera l  fo rmal ism 

L e t ' s  d i s c u s s  s h o r t l y  the  g e n e r a l  f o r m a l i s m ,  to  t r e a t  a p u r e  C o u l o m b  gas  ( i n  

the  l im i t  of u l t r av io le t  and  In f ra red  cuto f fs  r e m o v e d ) .  The n e e d e d  phys ica l  hypo thes i s  to  

do that Is neutra l i ty .  Screen ing  must  fo l low f rom the theory.  

L e t ' s  d e f i n e  "~('~"~hen'" 0 r e f e r s  to  t he  I n f r a r e d  c u t o f f  a n d  N r e f e r s  to  

the u l t rav io let  cutoff.  ,.~(- Q, ,~1 
Let the cova r lance  of be: 

" •  ( -Q,~) J I 
= • - -  (61)  

Let 's def ine the fo l lowing par t i t ion funct ion:  

: ~ s ~ ( ~  Cx~ :u.v. d ~  ';°'"': I - ' " ° ' ° '  

(62)  

Let 's expla in what  : : u . v .  means:  

! ! l - 

: ~_(-Q,L) + ~( 'L,  At.) , L ) ' - ~  

the re fo re  

J ) ( 6 8 )  

(84)  
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I t  i s  c l e a r  that  

crlbes the "infrared par t "  _~,~,,// 

In fact  "1[ ̀(L'~/) has a mass ~v ~.L . g i v ing  a decay  ~_. ~L  

CUtOff ~ ~,~J ; ~j{=<~,L) has an ultraviolet cutoff 

and a mass ~ ~'-<~ 

+~ "t//-~/~ ~0¢ ~(=~,') ~ + / . r , , ~ ] )  

"l~ (/'~J) d e s c r l b e s  the " u l t r a v i o l e t  par t "  of  "~J-~'~Jnd ~( -Q* ' )des-  

and  an u l t r av i o l e t  

: where : : rel ies on the measure 

+++°"+ I+ : ~ ~""+-  ++"-°'+S 
~=~ . . . .  ~ "  "+'J.+~ L "1'(:~'~) 1 

,,~ ,.'o~ ~ '  y ,  (x;) , 
"~ ; e .  " , v  

i I:++.+¢-°,+'> 
,,t (-+,L) _, (~.~) 

T r y . .  
i+=1 ¢=1 

(66) 

r ,~ . + , ,+be, L). ocz E,'E i (.xZ, x~) ~ (o~ 

: ~.dr.CV'-°','~3~d '~+ "., ¢-+- ~. . : ,  

+,_ ~ ++(+"]>+o, -'_ + ++++,~ + ~-+,,+~+> = @_.2 +:, ~ -  2. 
( 6 z )  

and therefore 

_ (Z,~ ' )  . 0('Z 

Z "- ~ . . "  JT_ ~ 
" ~ = 0  

Let's perform the Infrared l imit L~----> oo : 
,.. (--~, , )  

keeping N fixed (ultraviolet cutoff fixed) ; ~ (×) Is not defined as <~-~oo 

I n  fact 

= = co f e e l  
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(neut ra l i tY .  In fact : 
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can have a m e a n i n g  In the Q - -~  oo l im i t  If ~ '~;=o 

pz Cp~ ÷ ~-~ ~') 

a n d  if r - - O  ; ~ ~ E t  

makes (70)  flnl'{Je. If 

,:p (x,--x,~) 
~.~ has a z e r o , p r o v i d e d  Y-E~'"o whloh  

E ~ , ~ o  (not neutral) then ~ ~,-~,~ d-~'# ),;,~ ~ ,  

where 

- ~,~ 

,vt 

o ; [  Z ~,-¢~ 

,.Z~ - L (o,o))  

(x,,,xo) - L (o )  IS a symbolic notation for 

(71) 

(72 )  

(71 )  shows that  on ly  neu t ra l  c o n f i g u r a t i o n s  a re  c o n t r i b u t i n g  to ~t'-2 0~/J~in the  

infrared limit. ('Q'~) 
T h e r e f o r e  IIm ~-I d e f l n e o  the  pa r t i t i on  f u n c t i o n  of a neu t ra l  gas  (o f  c h a r g e d  

G.-)0o 
partcles) with a 2 -body Interaction 

¢*,,×a) : 4'r ( ¢  - g 

~z/v' e /p(~(,-- xa } 
(78) 

At large distance 

V ( ~  
~rr 

Relnsertlng in (68) (4'1. ~- ( o ) )  we can rewrite: 

(74 )  
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~__ , ,,-(L,~') 1,, ~I-Qpv) I ; ° ' < "~>P- -  ' ,< >--- {;~,,...~,,,1 =~" ' ° ' J  . . . .  ~-< ~ ~'~' '--T. = ~  ~ " ~'"~dl ~ I. "" (15) 

and 

e 4 Z e ; ~ o  

'~ = ~.~-  cpg (76)  

w h e r e  

(~--> Oo 

whe r e  

C.&q,~) (-Q,O 
(~,,,~) - C C~ 

I 

I 

I 
p ~  a=L .~ 

4 
(78)  

As (~ ~ >  co the f irst Integral  is f ini te for Ipl= 0 and i p l - - > o o  

As ~ ~ c~ the second in tegra l  is f ini te for x - P c  . 

There fore  the f irst in tegra l  behaves as-#/~Tr /~  YL/XL~Xa/ as IX,,-x#/--> c.o 

. t h e  s e c o n d  i n t e g r a l  b e h a v e s  aS-~ZTT /'~ #'z/x,'--~<a/ as 

ix:-~I - - > o  , 

Let 's r e m e m b e r  that ~,z. has the d imens ion  L ~ ' ~ ]  

Let 's  def ine there fo re  

-" ~0 (79)  

There fore  it fol lows easi ly  that 
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Szrr t~ r~ :_ C,-~)  ~ ~ , ~  ~ - ~ o  (80) 

To fix L means to fix an intermediate scale (a visible length scale) 

T-L= 

d Is the ultraviolet length scale:  then (~ (o~ : 4/ZlT I~ ~/,-1 
Therefore we can write: 

( 8 1 )  

I - q-" 
(82) 

We have  d i s c u s s e d  the  c o n n e c t i o n  b e t w e e n  the m a s s i v e  S i n e - G o r d o n  t h e o r y  

a n d  the  Yukawe gas .  We have  a l so  g i v e n  s o m e  h in ts  on the  way to e x t e n d  th is  

connect ion to the true Coulomb gas. 

Now we want  to wr i t e  the  p a r t i t i o n  f u n a t l o n  fo r  t he  n e u t r a l  C o u l o m b  gas  

system with a fixed ultevlolet cutoff. 

Let's def ine 

c~,,13) : . ~ @ - C ~  ) e .  (88)  

where q.~(R.) Is a g . r , f ,  with covar lance (we call  here Q=R) 

I I ( 8 4 )  

IX3 • - ~ -  ~S - Z~ Ca,~) 
From what lust d iscussed,  we have that ~,~n. ~-.1" C~-,._ 
Is the par t i t i on  funct ion for  the Cou lomb gas In the g rand  c a n o n i c a l  f o rma l i sm,  with an 

ul t raviolet  regulator.  :~ (R) 
The  i dea  is now tha t  of s t u d y i n g  ~--Z wi th  the  R . G .  and  then  to  
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prove results uniform in R. Therefore : 

+++,, . ++,+ 
+ - ~ _ _  

t,(=o 
( 8 5 )  

and ~(~) ~y~ has covar lance 

( 8 6 )  

C,.~ - ~ C c':) 
K=O 

( 87 ) 

. i  
The f ie lds  "L~ a r e  a g a i n  I d e n t i c a l l y  d i s t r i b u t e d ,  but  d i f f e r e n t l y  f rom the u l t r a v i o l e t  

case now those with lower K have a decay on a shorter  scale. In fact 

= ~_K E (era) 

, , j ,(~) .,~,{~,J 
T h e r e f o r e  v (  wl th K>> d e s c r i b e  the  I n f ra red  c o m p o n e n t s  of  t he  f i e l d  "'Y w h i l e  

t hose  wl th  f l n l te  K a r o u n d  0 the  u l t r a v l o l e t  and v l s l b l e  c o m p o n e n t s  of t he  f l e l d ' ~ ,  
# 

TO study the  t h e r m o d y n a m l c  p r o p e r t l e s  of the  Cou lomb  gas we have to p r o c e e d  

In this way: 

1) Consider a certain number of frequencles 1.2 . . . .  K and the corresponding fields 

2) C o m p u t e  the  e f f ec t i ve  p o t e n t i a l  "~'[=~V"" tha t  we ob ta i n  by I n t e g r a t i n g  o v e r  a l l  

the lowest frequencles K+I . . . . .  R and which of course wlll depend on R. 

~'(K) Is defined In this way 

,v K 

"~V ("P(+~P+'"Y'~)' I '~+<:o+..~i:,,, ~. + ~- PCd+"+'") , , . ,  P(a'~c'<+'>.) (sg) 
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3) Send R ._->co. The e f f ec t i ve  p o t e n t i a l  we have  In th is way te l ls  us how the 

Cou lomb in te rac t ion  plays its ro le  over  the observab les  of " f requenc ies"  assoc ia ted  to 

~u) ~(<], Of c o u r s e  a f te r  tha t  R ~ oo the h i ghes t  i n t e g e r  K the  f ie lds  ~/, j , . ~  ) 

can be as large as we like, 

Remark 

We have: 

= PCa'~'"'"). P('a Q__~,,I ~ ~-ld) 
(90) 

(91) 

Let's define 

=__ ~ ~=~,, "¢.E 

therefore 

(92) 

(98) 

Let's define 

c =_ 

(94) 

(95) 

e,,,~r .~.,fK) l . l (  am not  go ing  to i n t e g r a t e  and t h e r e f o r e  ~ ¢ l s  jus t  an ac t i v i t y  

d e p e n d i n g  on E. if now one  t r ies  to c o m p u t e  (90 )  one  Is aga in  in s i tua t ion  wh ich  Is 

formal ly of the same  type as that discussed in the ultraviolet case. 
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~v=<<X'~ <~'~ -_ .I ~c~<~+,,~ .,. ~.:d~ <~'~ ~ ~ ~ ~ ~  

is formally a partit ion function for the following field theory: 

(96) 

c o m p u t e  ) is lus t  to c o m p u t e  the " p r e s s u r e "  for  th is  p a r t i t i o n  To 

function. 

if we put K=- I  then this Is the true part i t ion function. 

Two remarks now: 

a) One has to compute  (90)  with the same techn ics  as be fore ,  wh ich means  that  one  

computes  (90)  Integrat ing one step af ter  ano the r  and t ry ing to cont ro l  the rema inde r  at 

each step. 

Let 's  assume for  the m o m e n t  we are  ab le  to do it ; we wi l l  d iscuss it in some  de ta i l  for  

the pressure we get the following expression for V ~ )  : 

0o 7" 
(97) 

Formal cumulant expansion. The fol lowing facts are true ( [ 8 ]  [ 1 0 ] ) :  

a)  each  te rm  of th is  se r i es  is f i n i t e  as R..-~¢o, but  the  odd o r d e r  t e r m s  go  to 0 

(neutral i ty)  

a ' )  each  te rm of this ser ies  desc r ibes  the con t r i bu t i on  to the i n t e rac t i on  t yp ica l  of a 

muIt lpole. 

b) for a i > 8 w  this series is asymptotic to "V'i (K) which means that with probabill ly 1 

(98)  
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with :r>0 

c) for a i<8~r  we have the fol lowing results: 

the  te rm C.z(('t/ '(U~lescrlblng the c o n t r i b u t i o n  of a 2 q - m u I t l p o l e  to the  e f f e c t i v e  

potent ial  Is In the l imit R -----> 0o finite as (z2>(122q and Infinite as = a < ( = l i q .  

Therefore the asymptot ic expansion becomes 

' £ - > o o  q=, (99) 

Z 
and , ~ )  .< ~C~-,) 'f ~ ~ L~,~- , , ,  ~4~ ] 
which  exac t l y  means  that  the d e s c r i p t i o n  of the e f fec t ive  In te rac t ion  as sum of a l l  s ize 

mult lpoles falls below Sir but part ial ly survives, 

The Meyer expression for the pressure ,  , ,a>8~ 

now we wan t  to e s t i m a t e  the  p r e s s u r e  of  the  C o u l o m b  g a s  w h i c h  m e e n s V ( ~ p g l )  

for K=- I  ; therefore we want to compute:  

: z: s ~:~,~) ( 1 0 0 )  

in the R > O0 limit. 

Let 's def ine (P ~<" f~] = %-~ / x  

<----> I I 

I 4 
p2.+, ~z + ~zOe.H) 

l a~(,~ ~l) = i dp.(y L<'e2) .,. 

( 1 0 1 )  

( 1 0 3 )  



337 

~'~ ~-~'J ~ E--~ 

~ c ~,~, _ ~  (104) 

therefore 

;io 
I . b*'~] (e) 

AO~.) 

(105) 

the re fo re  the par t i t ion  funct lon Is now exac t ly  the same as In the u l t rev lo le t  p rob lem for  

the Yakawa gas except  that: 

c) 0< ~ > 8 TT 

It Is c l e a r  tha t .  as we know t h e r e  Is no u l t r a v i o l e t  s t a b i l i t y  a b o v e  87 .  the  on l y  

poss ib i l i t y  that  the theory  ex is ts  here  is that  X (R) end A (R )  match  t o g e t h e r  in the  r igh t  

way to compensate  every d ivergence.  

This must be true as in the infrared case;  

(107) 

is trivial. 

The  po in t  is that  In th is  case  one wants  to p rove  the  a s y m p t o t l c l t y  of the Mayer  se r i es  

fo r  the p r e s s u r e  wh ich  m e a n s  to c o n t r o l  the  c u m u l a n t  e x p a n s i o n  at any  o r d e r  and  to 

have a non trivial est imate on its remainder .  

To do that one has to proceed In this way : as in the ul traviolet  case def ine 

T , (~) (108) 
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and rewrite the partition function in the following way: 

M 

e_.2 "c'~' ~ [ Vs~"'-v=, (~')~ c.2, ] 
( 1 0 9 )  

then one can prove the two following facts: 

I) all the coefficients C ~  ) are finite, in the R ~ >  oo limit. 
--1 

II) The In tegra t ion  in (109)  with t h i s ' r e n o r m a l i z e d "  p o t e n t l a l l s s u c h  that ,  f o r e  

mechanism very similar to that working In the ultraviolet case, produces a remainder which 

is finite and has the right properties in ~ and ~~  

The proof goes on with the same R.G. techniques used in the ultraviolet case. 

( I)  and (11) a l low us to conc lude  that  for  any In teger  M, a=>8~,  p rov ided X 

is small enough, (M dependent) , there exists e constant CO. such that 

I P ~ ' ~  - k ~v! % c~,~) I ~- ~o ,,,o, 

when 

- -  C ~ ) 

JZl-~oo ~-->t~ IZ I  
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1 - Introduction. 

Semi-classical approximation of quantum systems through the saddle point 

method has been developped during the last years in view of a semi-clas- 

sical treatment of Q.C.D. Let us recall that this method has been tested 

quite successfully in elementary quantum mechanical systems. For the 

standard double-well problem it has been shown that (complex) saddle 

points indeed generate the W.K.B. result [iJ and that the so-called di- 

lute gas approximation just mimics the structure of the saddle points. 

In the octic double-well problem the dilute gas approximation does not 

work [2~, but the proper saddle point method is in good agreement with 

the W.K.B. result 13]. 

In order to better control this method in quantum field theory, instan- 

ton contribution for the non-linear 0(3) model has been extensively stu- 

died starting with the works of Berg and L~scher and Fateev, Frolov 

and Schwartz [4]. In their approach, they imposed "spherical" boundary 

conditions which amounts to define the classical model on the two dimen 

sional sphere. Their result has been analysed by Patrascioiu and Rouet. 

[5] and Rouet [6]. If the saddle point method is to be taken seriously 

one is led to think that in the infinite volume limit the behaviour of 

the semi-classical model is independent of the boundary conditions. This 

is the main reason why we apply the saddle point method starting with 

periodic boundary conditions for the classical model. This computation 

has been already done in ~7]. However the analysis of the results was 

not achieved. In particular, the isospin invariance was not considered 

which play a central role if we wants to interpret the results in terms 

of an ensemble of charged particles. 

In the present paper, we continue this analysis. To be complete we felt 

* Laboratoire Propre du C.N.R.S. 
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necessary to recall some facts especially on the instanton manifold 

which were only suggested in [7]. This is why the classical 0(3)model 

on the torus is presented is Section 2. Section 2.1 deals with the 

classical field configurations and their topological properties. In 

section 2.2, the instanton manifold is described in a way to be used 

in the saddle point method. In section 2.3, the action is introduced 

together with a "Riemanian metric". In section 3, we recall the compu- 

tation already performed adding corrections which in fact changes our 

previous result. Sections 3.4 and 3.5 deal with isospin invariance 

which allows us to get an expression for the mean value of scalar obser- 

vables to be connected with a Coulomb gas. In the last section comments 

are given on the infinite volume limit. 

2- The classical Euclidean ¢~ Model on the Torus 

2.1 - The Field Configurations. 

The classical field configurations are mappings from the two dimensio- 

nal torus ~ ~ ~z/Zz into the sphere S 2 (i.e. ~ ). Let us denote by n 

such a mapping. As a mapping from ~2 into the unit vectors in ~3, it has 

the following properties 

(2.1) 

We know that two maps are homotopic if and only if they have the same 

degree [8], (the so called topological charge). The configuration space 

is then decomposed into subspaces ~ k of maps with degree k. A smooth 

map ~ : R x T 2 ~S 2 defines a path in ~ k by t~___~ nt= ~(t, • ). Let 

no e ~k. The tangent space Tno(~ k) at no is defined as 

G i v e n  a n y  p a t h  t ~ n t t h r o u g h  n o ( a t  t = 0 ) ,  o n e  h a s  

nt It_0 e Tno ~k) 
dt 

Conversely, given any m E Tno(~k), there exists a path t ~ n t such that 

a t dt nt t=0 = m 

The classical action S = ~  is defined as 

s(n  : (2.2  
2f  ~ 
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Due to conformal invariance of the classical model, the action is inde- 

pendent of the size L of the torus I this is why L = 1 in this section. 

Let us recall also that the degree Of a map n given by 

8~ T~ 
is the pull-back on T 2 of the normed volume element of S 2. It is well 

known that 

S(n) ~ ~JQ(n) J (2.4) 

and that S(n) = ~ IQ(n)J if and only if the map n is either holomorphic 

or anti-holomorpMic. Holomorphic and anti-holomorphic maps (named ins- 

tantons and antioinstantons) are the only critical points of the action# 

More precisely, if t ~ ~ n t is a path in~ k then 

%S (no) no = d S (nt)It=0 =- , A ntlt=0 
dt ~n o 

vanishes if and only if no is such a map. Finally at every critical point 

one defines a bilinear ma R (the Hessian of S) on Tno~ k) defined by 
d2 S n ~ &ZS " " 

d~ ( t)It=0 ~no 2(no'no) (2.5) 

2.2 - The Manifold of Instantons 

Using holomorphic coordinates for the sphere S 2 (App.A) that is, defi- 

ning : 

~(x) = (~, on) (x) for the x's such that n(x)6S2-~e3~ 

v(x) = (~'on) (x) for the x's such that n(x) ~$2-I.e3~ 

and using ~=x~+i~the instanton solutions are such that 

~u = 0 ~ ~v : 0 (2.6) 

They are elliptic functions and can be expressed [9] in terms of the 

~- -functions with half periods 1/2 and i/2 having the covariance pro- 

perty 

(z+w) = (-i) m+n+mn e ~ (z4~2)~r'(z) , w=n+im e~+i~ (2.7) 

More precisely[_ an instanton solution of degree k is given by 

u = c ~ ~(z-ai) (2.8) 
~-4 U-( z-bi ) 

where C is a non vanishing complex parameter while the ai's and bi's 

are such that 

7" = y__ j ÷ + 
£--4 ~ 

For later convenience ~e define M 

,-__ ± _- 

(2.9) 
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Two sets of parameters (c,a,b) and (c',a',b') define the same solution 

if and only if there exist ~ 

a) ~" ) ~ 6 ~ **" ~ x'-- ~ ~/.-. ~ such tha~ ~" = ~ ~t' 

permutations of { 1,2 ..... k } b) ~ and 

such that 

b Z' " 

C ' -- C e ~ )  ~""' l ~ Z ~ ; - ~ ' "  r~'~') C -rr'~' IN'°"-i"~" " ~"l~il~3~- 

where R~ and I~ denote the real and imaginary part of ~ respectively. 

Hence one deduces that an instanton solution of degree k is entirely 

determined by 

i) a set [ai,bi] ~ T k-I x ~k-i a i # bj 

ii) a number ~e ~2 

iii) a complex number c # 0 

the solution being given by Equ. (2.8) where 
k-4 ~.-4 

up to permutations. 

In order to treat correctly the parameter c one needs to look at the 

action of the isospin group SU 2 on the instanton manifold. The action 

of SU 2 reads 

AX ~ 
-g~.g 

The function ~+~is an elliptic function with k poles {bi~and there 

fore has k zeros la'i~ such that 2- bi = ~ai. So we put 

~ ~(}-~,~.) = c.- # ~ ' ( ) - a : ' 2  , < c  T-F o - C % - a ~ ' ~  ~- [~ x. ,  , . ,  
k 

where c' 1 and c' 2 are non vanishing complex numbers and 

Za'i = Zb' i - ~a i = ~b i = k~ (2.12) 

We see that ~ is invariant under the action of SU 2. The above equations 

are valid for any z. For a given z o, we therefore obtain a solution u'£%9 

such that 

from a solution u(z). Conversely, from the set of solutions given by 
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k ~- (~0-b~') ~(~-a~) (2.14) 
u (z) = TT 

i=l ~-(~o-aC) 0-(~-~') 

one generates all the instanton solutions by the action of the SU 2 group. 

If one imposes only that 

k 
~-- (ai-b i) 6 ~+~ (2.15) 
i=l 

then these solutions reads 
k 

~[~ ( ~ - ~ j J ( ~ - u )  ]7" ~%-b~) ~ ( ~ - o ~  
U(Z) = e £" 

We will use this parametrization in our final result. 

(2.16) 

2.3 - The Hessian of the Action ; Riemannian Metric. 

Let us denote by ~ and v the components of a tangent vector at an ins- 

tanton solution n with components u and v. One gets 

u = -u 2 v (2.17) 

when z ~ a i and z ~ b i. The Hessian ~$ (n,n) reads 

--- -- j~ (2.18) 
~- ( + ,  I~,l • ) 

or as well 

H e n c e ,  d e f i n i n g  

_ (2.19) 

x = q-i ~ ~(z-bi )2 u O when z ~ b i 
6 ~q (2.20) 

= q-i ~ 0~(z-ai )2 v O when z ~ a i 

where ~ k 

q ICl 2 T T ] o ' ( z - a ~ ) l  2 + ~ -  lO-lz_bi)121 ~" = ( 2 . 2 1 )  
L'= i <-- t 

one checks that 

= ~ when z ~ b i and z ~ a i 

so that in termsof these new functions the Hessian can be written up 

independently of the choice of coordinates, 

This is the change of variables already introduced in Ref. [7]. 
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From the periodicity property of the ~-function Equ. (2.7), we obtain 

~(z+w,~+~) = e ~k[~(z-~)-w(~-~)~ ~(z,~),wE ~+ i ~ (2.23) 

As a sesqulinear form, ~ will be defined on the space of square 

integrable functions with periodicity property (2.23). One then defines 

on this space the following operators 

Tq = ~ -  + ~ -  log q 

Tq+=-~z + ~z log q 

Introducing 
/[k] z-~l 2 

qo = e 

we write 

Tq = Tqo + ~ log q/qo 

Tq + = Tqo + ~z log q/qo 

2.24) 

2.25) 

2.26) 

2.27) 

(2.28) 

where now the "perturbation" ~ log q/qo is seen to be periodic. More- 

over let us list the following identities 

Tq = qo q-i Tq ° q qo-i 
(2.29) 

Pqo q qo -I Pq = q qo -I Pq 

where Pq and Pqo are the orthogonal projection operators on the zero 

mode subspaces of ~q = Tq + Tq and ~qo = Tqo + Tqo respectively. 

Finally, a Riemannian metric is introduced in the "neighborhood" of 

the instanton solution u induced by the metric on the sphere S 2. It 

reads 

dS2 = d2x ( l + l u l  ~ )2 

Decompos ing  ~ i n t o  c o m p o n e n t s  a l o n g  t h e  z e r o  modes 

modes ~ one gets 

dS 2 ~-- /ij d ~i d ~ j + ~d2x ~ m = (2 31) 
W~'= 4 JT~ ( i+ I u ~)z " 

(2.30) 

and orthogonal 

so that using the change of variable Equ. 
k 

~ = q-i [~ 0- (z-bi)2 
~'= 4 

one arrives at 

ds2 = j + [ d2x 
where d~ 

(2.Z0) for 

the 

(2.32) 

( 2 .33 )  

~ij = ~d2x [l+lul2] -2 ~ 9~ (2.34) 

i's denoting a set of parameters defining the solution u. 
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3- Functional Integral ; Instanton contribution. 

3.1 - Functional Integral. 

Writting formally the expectation value of an observable ~ as 

<~> = Z-~0(n) • e -S(x) (3.1) 
# J~ 

where.D(n) denotes the formal measure 

oD(n) = ~- an(x) (3.2) 
x~T~ 

dn(x) being the volume element of S 2. 

The integral over /~ is decomposed into a sum over all the topological 

sectors and an integral over each sector in which the saddle point 

method is to be used [i0]. 

To be short, let us just say that <~> is written as 

#irk. f ~  
k ( ~,! )z 3.3) 

according to section 2.3. 

In order to regularise the Gaussian integral we introduce Pauli-Villars 

regulators so that ~k / ~e~ 

< 0>_- 7:.-' ~ C- T (~{ ~ # i',,I," J.J;JY~ O(~.de- 
Ck!)~. ] ~a, ( 3 . 4 )  

where ~ 

Note that the regularisation procedure breaks the conformal invariance 

and therefore makes the size L of the torus a parameter in the theory. 

We chose 

e~ = i) e 2 = -2 . M12 = 2M 2 j" M22 = M 2 (3.6) 

3.2 - The computation of Preg 

This computation has been already performed in Ref. [7]. To be complete 

we just recall the steps of the calculus. 

a) Assuming q arbitrary, for instance defining qt = (l-t)qo+tql where 

ql corresponds to Equ.(2.21), one computes first 6 ~reg (q). 

By using algebraic properties only, one ge~s 
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C-t (3.7) 

where G+q(x,x ' ) is the kernel of the operator G+q satisfying 

Tq + G+q =~-pq 2 G+q Pq = 0 (3.8) 

and G+ M (x,x') is the kernel of the operator Tq [~q + M2] -I 

Let us emphasize that the function [G+q ~ ~ e~G+Mi](~,~)has to be perio- 

dic. One can easily see that from Equ. (B.7) of Ref. [7] our result 

has not this property. This is due to an incorrect expression of G+q 

at coinciding arguments for which the main singularity has been only 

retained. A complete computation leads to the following result (see 

Append. B). 

2 d2x  zlog log q qo+ log qJqo log } % Freg =-T J~ 

+ 4k 5 d2x ~log q (3.9) 

+ ~Tr log N (q) 

where N(q) is the matrix given by 

N(q)ij = ] d2x ~(i) X(j) i,j = 1,2,..2k (3.10) 

X(i ) denoting the zero eigen modes of ~q (Equ.(3.15) of Ref. [7]) 

Hence, having computed Vreg (qo), one gets 

Freg (q)= - ~ ~ d2x ~ ~zlogq/qol 2 + 4k (d2xj log rr + logN(q) 
qo 

- k log M 2 L 2 - k log k/4 3.11) 

to be compared with Equ.(3.27) of Ref. [7]. 

The computation of Freg corresponding to the instanton solutions b) 

follows quite easily referring to Equ. (3.36) of Ref.[7]. As one can 

see the function I(c,a,b) does not enter any more which changes rather 

drastically the final~sult. We get 

Preg (inst) = /__log l~(ai-bj)l 2- 7-- logl~(ai-aj)12-Zlogl~(bi-b#12 

+ logfcl 2 + log det~- k log M2L 2 

+ /(k) 

where , - r r l ~ l  ~ 

~(k) = 2k -k log k/4 + 2k 2j d2x log l~(z) 12 e 
It has been shown elsewhere (see Ref.[ll]) that 

~(k) = -2 ~k + c s_t 

being a numerical constant. 

(3.12) 

- ~o;)I~c~)~'3.131 

(3.14) 
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3.3 - The expression of <~> 

Using (c,~,a,b) to parametrize the instanton, the expectation value 

(3.3) reads ~.~ 
<~>=71 ~,2k~2k] d2Ck2d2~ V[ 

d2a i d2bi 
k ( k ! ) 2 ic-- ~ 

,.~zl@(ai-bj) 1 2 i~(bi-b j) I 2 
, ~u) (3.15) 

[[ I~ !ai-b j ) I 2 

where 

~= 8~ e-~'~; e~  
~-f~'a 

a k = . , . ~  j, + k ' ~  ( 3 . 1 6 )  

b k = - E b  i + k ' C  

The integral over the a'is and bi's being taken on the torus. The inte- 

gration over ~ is also taken on the torus. The c-integration is to be 

looked at in connection with the isospin invariance of the problem as 

it was suggested in Section 2.2. 

3.4 - Isospin Invariance ; the k = 2 case 

The k = 2 case is quite instructive in dealing with isospin inva~iance. 

Due to the constraint Za i =~bi, we use the new variables a and b defi- 

ned through 

a I = a + qt a 2 = -a +gT a ~ _+ b (3.17 
b 2 = b + ~" b 2 = -b + 3P 

Using the equations (2.11) the action of SU 2 on the instanton manifold 

reads ~, -- ~o~ %-~)/~_ F~-+~- ) 

2(~,~ = [0< ~" ~c~) , {~ ~c~, ] / (~r,{~) (3.18) 

~cI,') =[_g~pc=~+~c~)31 c-F~'+ a-)  

where ]'= t(r(,,'/~(~)~ ~denoting the Weisstrass function with half pe- 

riods 4/~ and "~/i From these equations, one constructs 3 independent 

SU 2 invariants namely, 

Io = l~l ~ I~( '*) I~ + 12(L'~I  ~ 
Clef ,4 ) (3.19) 

(. I~'1'- 4 4 ) ( 3 . 2 0 )  

Hence, the invariant 
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J = I o -IIl+ i I212 (3.21) 

is positive unless c is zero or infinity or ~(a) =~(b) that is a=~b. 

Therefore the range of integration which is SU 2 invariant is defined 

to be 

~ = ~(c,a,b), J ~ ~ J (3.22) 

To deal with the c-integration, we shall perform a change of variables 

using the SU 2 invariance. According to Eqs (3.18), we put 

where 

c 0" ( ° - )  ~ 

~(b) z 

, ~  c ~-') = 

~= C~ e~ ) 

(3.23) 

(3.24) 

Then going from the variables (c,a,b) to the variables (@,~,a',b') one 

gets 

Ic~,  .~. I o- ( ~ ' - % ' ) I  ~ 

% . ) 1  IO-C ' = ~ o  ~ o ~ ,  ~ -1"1-1a- fa , ' -  ' ~ ~ J I  ~ . 

I T  I o ' ( ~ .  - g ~ ' )  I a 
The invariant domain of integration now reads 

= [ I I 
which is to be interpreted as a hard core condition. 

For k arbitrary, one checks that the measure occuring into the expres- 

sion (3.15) of <0> is invariant under isospin transformations. At every 

step of the calculation, this can be proved by noticing the following 

main property : let q be given by equ.(2.21) and q' be the corresponding 

quantity after an isospin transformation ; then, according to Equs(2.1D 

one deduces that q and q' differs only by a multiplicative constant 

(which is Ic'212 in our notation). In particular, the invariance of 

~reg (q) given in (3.5) becomes quite obvious. 

As suggested at the end of Section 2.2, the integration over the parame- 

ter c can be performed by using the isospin invarlance. It was shown 

that defining 

k 
= C~ ~(Zo- a~) 

~i~ ~(z o- 6 i) 
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there always exists an SU 2 transformation sending ~into ~'=i. Hence 

performing a change of variable induced by the well known Fadeev-Popov 

trick, the integration over c or equivalently over ~- is replaced by an 

integration over the SU 2 group. As a consequence, the instanton solutions 

to be used are then those which have a fixed given direction at z = z o 

that is, such that u(z o) = i. 

3.5- Final Expression 

So after integration over the SU 2 group, it is easy to see that <~> reads 

where now the instanton solution u is given by Equ.(2.14). 

Introducing the Coulomb potential on the torus (up to a constant), namely 

q~(X ) = ~ ~ (3.28) 

the potential ~k(a,b) reads 

~k(a b) = .~ ~F(ai-b j) ~-" ' 1,3 - i<j ~(ai-aj ) - ' • ~;~bi-b j) (3.29) 

using the constraint (2.9). This potential is naturally interpreted as 

the Coulomb energy of a neutral gas of 2k charged particles with zero 

electric dipole moment. 

If the constraint (2.9) is introduced explicitly in (3.27) by using an 

obvious change of variables, we arrive then at the final result 

Z_i ~" (L ~ ~z)k ~ ~-k 
<0> d2ai d 2 bi 

k (k!) 2 wT22k i=l 

_4~Wk(a,b) (3.30) 
[ ~ (aj-bj)] e ~(u) 

where the instanton solutions are glven by Equ.(2.16). Let us add 

that integration of the ai's and bi's on the torus is understood with 

a hard core condition as exhibited in Equ.(3.26) for the k=2 case. 

4 - Some comments on the final result. 

In combining isospin invariance and some parametrization of the instan- 

ton manifold, we have shown that the instanton contribution to the mean 

value of scalar observables can be interpreted in terms of the grand 

canonical ensemble of a neutral Coulomb gas on a two dimensional torus 

with zero electric dipole moment at ~ =4 ~. 
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An other interpretation can be given using Equ.(3.27) for <0>. In this 

parametrisation, it is easy to see that the potential Wk(a,b) splits 

into two pieces. The first one corresponds to the Coulomb energy Wk_ 1 

of 2(k-l) charged particles. The second one can be interpreted as a mul- 

ti body interaction. Hence, heuristic arguments might be developped along 

the line of Ref. [6] in which the spherical case is analysed in the infi- 

nite volume limit leading to expect that in this limit one recovers the 

quantum Sine-Gordon model. 

However, the study of ensemble of particles interacting by long range 

forces has been proved no so easy even in the standard problems such as 

the Coulomb gas. We therefore leave the problem of the infinite volume 

limit quite open. Let us mention only that the hard core condition such 

as Equ.(3.26) plays the role of an ultra violet cut-off. The stability 

properties of such a system have been extensively studied by F. Nicolo 

[12]. We refer the reader to this work and references contained in it. 

Appendix A Stereographic coordinates. 

In connection with Section 2.2, let us recall the holomorphic cha~ 

have choosen for the sphere S 2. Let us denote by (el,e2,e 3) 

mal basis in R 3. Define 

we 

an orthonor- 

by 

and 

Then for u ~ 0 

Appendix B On the Computation of Green's function 

The equation 

Tq + Gq + = I -Pq with G~ Pq = 0 

is solved by putting 

G+q = q q~l G+q ° qo q-i (~_pq) 

where G~o is the solution of 

T~o G~o = I - Pqo 

such that its adjoint Gqo = (G~o)+ satisfies 

Tq G~o = 

In te~ms of differential equations one has to solve 
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Since we are insterested in the local behaviour G~o (x,x') we introdu- 

ce the following Ansatz _~k[[~-~')~-~-~] 

+ , ) = [  - 

t h e  e x p o n e n t i a l  f a c t o r  t a k i n g  c a r e  o f  t h e  p e r i o d i c i t y  p r o p e r t y  o f  G~o 

when x and x '  a r e  c l o s e  t o g e t h e r .  The f u n c t i o n  H ( x , x ' )  i s  r e g u l a r  and 

periodic. Then we get for H the following equations 

2k +~ H(x,x') = Pqo (x,x') + 0(Ix-x' J) 

~z,H(x,x') = 0 + 0 (Ix-x' I) 

These equations need not be solved but will be used in our next compu- 

tation. Note that the H-term in the expression of G~ was absent in our 

previous computation Ref. [7]. 

The expression of G~ M is borrowed from Ref.[7~ Putting things together, 

one gets 

[G~ +Zei Gq Mi] (x,x') = - ~ ~ logq~ + H(~,~) 

_ q q;1 qoq -I Pq 

Hence 

Tr{~ Z log q [ ~  +~ei _+Mi ] Uq 

2 ~log ~ +H(Z,~)] - Tr ~T~ q q~iG~o qoq-ipq = d2x logq % 

since 

Tr {~Tq+qqo-iG~o qoq-ipq~ = Tr{~logq Tq+qqo-iG~oqoq-ipq 

One gets 
Tr {~Tq+q qo-iG~o qoq-ipq} = Tr {~logq Pq~- Tr l~logq Pqo 

Now by integrating by part the H term and using the H-equ&tion, one 

arrives at 
+Mi 

Tr ~ ~zlog q [ G~ +~ei Gq ] 

_ ~2 Id2x ~ 2Z log q ~log ~ - Tr~logq Pql +2kld2x~og q 

Moreover, it has already been shown that 

Tr ~log q Pq = - ~ ~Tr log N(q) 
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Introduction 

Stochastic quantization is an unpretentious theory as far as its 

formal apparatus is concerned: It establishes a direct link between 

the classical equations of motion of a dynamical system and its 

quantum description. The method by which this is accomplished is 

based on probabilistic rather than on algebraic concepts. These 

properties give stochastic quantization a flavor of universality and 

yet distinction from standard (i.e. canonical or path integral) 

quantization methods. It appears powerful enough to make a breach 

into unexplored territory. Quantum gravity certainly has to be sought 

in this territory. Its investigation by stochastic methods has been 

initiated only very recently. In the following therefore we can give 

only a very preliminary account of the application of stochastic 

quantization to the gravitational field. Not surprisingly, gravity 

presents problems to the stochastic quantization program that ordinary 

gauge theories do not. To put the peculiarities of the gravitational 

field into proper perspective it will be useful to recall the most 

important results of the stochastic quantization of gauge fields. They 

have therefore also been incorporated into these lecture notes (see 

especially Sec. III.3). Moreover we have tried to make the presentation 

as pedagogical as possible. Thus we start in Section I from Nelson's 

formulation of quantum mechanics as Newtonian stochastic mechanics and 

only then introduce the Parisi-Wu stochastic quantization scheme on 

which all the later discussion will be based. Owing to the fact that 

the Euclidean gravitational action is not bounded from below the 

Parisi-Wu scheme is not applicable to the gravitational field. In 

Section II we present a generalization of the scheme that is applicable 

to fields in physical (i.e. Lorentzian) space-time and treat the free 

linearized gravitational field in this manner. The most remarkable 
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result of this is the noncausal propagation of conformal gravitons. 

Moreover the concept of stochastic gauge-fixing is introduced and a 

complete discussion of all the covariant gauges is given. A special 

symmetry relating two classes of covariant gauges is exhibited. 

Finally Section III contains some preliminary remarks on full nonlinear 

gravity. In particular we argue that in contrast to gauge fields the 

stochastic gravitational field cannot be transformed to a Gaussian 

process. 

As a consequence the stochastic analogue of the background field 

method becomes very complicated. The nontrivial modification occurs 

already in first order perturbation theory and casts doubt on the 

validity of some results obtained recently for the perturbations of 

flat space. 

I. Preliminaries 

1.1 Stochastic Mechanics 

In 1966 Nelson [I] proposed a completely classical interpretation 

of the Schr~dinger equation, which was based on stochastic Newtonian 

mechanics. He considered the random motion of a point particle whose 

position x(t) obeys the stochastic differential equation 

I/2 
x(t) = v+(x(t),t) + (~) n(t) (1.1) 

This so-called Langevin equation defines the stochastic process (or 

random function) x(t) in terms of another, simpler stochastic process 

n(t), which is called Gaussian white noise. The latter may be 

characterized by the expectation values 

<n(t)>q = 0 , <q i(t 1)nj (t 2)> = 2~ij~(t 1-t 2) 

<n(t 1) ... n(t2n+1)>q = 0 

<n(t I) ... n(t2n)> = [ H <n(ti) n(tj)> 
n possible pairs n 

comb. of 
pairs 

(I .2) 

(1.3) 

(I .4) 

Equations (1.3) and (1.4) imply that all correlations of order higher 

than two vanish (this is meant by the "Gaussian" property of the 
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process). Formally the equations (1.2) - (1.4) are implied by the 

following path integral definition of the expectation value of a 

functional F[n]: 

_ ! /dtn2 - ! fdtn2 
4 4 

<Fin]> n = /d[n]F[n] e //d[n] e (1.5) 

Strictly speaking n(t) is a generalized stochastic process, its 

sample space consisting of distributions rather than functions (this 

may be concluded from eq. (1.2)). Therefore mathematicians prefer to 

write (1.1) in the form 

dx(t) = v+dt + /~/2m dw(t) (1.1') 

where w is the Wiener process which is formally related to n by 

t 
w(t) = [ dt' n(t') (1.6) 

The sample space of w consists of continuous functions and admits the 

definition of a well-defined probability distribution called Wiener 

measure. Since the subspace of differentiable functions has measure O, 

the process w(t) can be given meaning only in the distributional sense. 

This has to be kept in mind when operating with n instead of w, as 

will be done throughout these lecture notes. A similar remark applies 

to the purely formal path integral appearing in (1.5). Note, however, 

that the integration of (1.1) is unique because ~ appears in it multi- 

plied only by a constant factor. Thus the Langevin equation is free 

from the so-called Ito-Stratonovich ambiguity [2]. 

An alternative characterization of the stochastic process x(t) 

defined by (1.1) can be given in terms of a probability density p(x,t) 

via 

<f(x(t))>n = /p (x't)f(x)d3x " (1.7) 

It follows from (1.1) that p(x,t) has to obey the Fokker-Planck- 

equation 

~t = - div(p v+) + 2~ Ap . (I .8) 

Physically speaking equation (1.1) defines the kinematics of the 

process considered by Nelson. Note that this kinematics is essentially 

different from that of the historical Langevin equation describing 
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Brownian motion with friction in the presence of an external force F: 

• . .3ekT. I/2 
mx= - ~½ + F(x) + t---~--~ n • (I .9) 

It is rather of the type that describes the limiting case of large 

friction coefficient e of the process defined by (1.9) (the so-called 

Ornstein-Uhlenbeck process). This limiting case corresponds to the 

approximate theory of Brownian motion due to Einstein and Smoluchowski, 

where 

= v+(x,t) + D I/2 ~ (I .10) 

(D is the diffusion coefficient kT/me). The dynamics of the latter 

theory is defined by setting v+ equal to F/em, i.e. the velocity im- 

parted to the particle by the external force. It is only at this point 

(apart from the choice of the diffusion constant in (1.1)) that Nelson 

made a different ansatz. He required that v+ be determined by the 

Newtonian equation of motion, i.e. the friction is set equal to zero. 

As x(t) is not differentiable, the implementation of Newton's law 

requires a substitute for the notion of time derivative. There are in 

fact two such substitutes: The mean forward derivative D+x(t) is 

defined by the conditional expectation value 

D+x(t) = lim <x(t+At) - x(t)> (I 11) 
At 

At+O+ x(t)=x 

and the mean backward derivative D_x(t) is defined as the mean forward 

derivative of the time reversed process x(t) = x(-t). D+x = v+ (cf. 

(1.1)) and D x ~ v are again stochastic processes. The appropriate 

generalization of the Newtonian equation of motion is 

m 
(D+D_ + D_D+)x = F . (1.12) 

Equation (1.12) implies a nonlinear equation for the unknown functions 

v+, v_. However, if 

and 

F = - VV(x) (1.13) 

I I 
~(v+ + v_) = -- m vS(x,t) (1.14) 

then this nonlinear equation may be transformed into a linear one by 

introducing 



359 

i S (x,t) 

~(x,t) = /~,t) e n (1.15) 

The linear equation obeyed by ~, 

iH ~-~ = H2 
~t - ~ A~ + V~ -- H~ (1.16) 

is just the Schr~dinger equation (with ~ = h/2~, where h is Planck's 

constant)! More precisely, with every quantum state ~ there is 

associated a stochastic process x(t) which at any time yields as 

averages of arbitrary functions f(x) the corresponding quantum mechani- 

cal expectation values. Note the restriction, in this statement, to 

functions of x (£here is no phase space for the classical stochastic 

process) and to equal-time correlations. Thus the equivalence of 

stochastic Newtonian mechanics and quantum mechanics is certainly 

limited in a formal sense (this is why von Neumann's theorem on the 

impossibility of hidden variables is circumvented), but it may still 

hold for all measurements that can actually be performed. We refer the 

reader to Ref. [I] for a discussion of this interesting question. 

Now the above restriction to equal-time correlations looks rather 

forbidding to a generalization of Nelson's scheme to field theory, 

where, of course, correlations of fields with different parameter 

values (i.e. at different space-time points) play an essential role. 

This, however, is not quite so. Even in stochastic mechanics, if H 

possesses a ground state ¢ , the following general property of the 
o 

ground state process can be shown [3]: 

<x(O)x(t)> = (~o, x e-H t /~ x ~0 ) (1.17) 

Here (,) denotes the scalar product in the quantum-mechanical Hilbert 

space. Equation (1.17) is remarkable because it relates the classical 

stochastic process to quantum mechanics with imaginary time parameter. 

In 1973 it was shown by Guerra and Ruggiero [4] that a similar relation- 

ship exists also for the free scalar field in Minkowski space: 

Euclidean (scalar) quantum field theory is the 9round state process of 

stochastic (scalar) field theory in Minkowski space. To show this a 

Hamiltonian formulation of the classical field theory has to be 

adopted~ We will not go into the details of this because this is not 

the approach that we shall eventually take in the stochastic quantiza- 

tion of the gravitational field. Let us only mention that the above 

relationship is not strictly valid for the electromagnetic [5] and 
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linearized gravitational field [6]. The reason is that only the magne- 

tic field components (or the "magnetic" components of the Riemann 

tensor, respectively) become unique stochastic processes yielding the 

correct correlation functions, whereas the electric field components 

split into couples E+, E_ involving the "time derivatives" D+, D_. 

Moreover the processes are not Markovian [6,7] (i.e. they are not 

determined by an initial condition). They satisfy Osterwalder-Schrader 

positivity, however. In the case of finite temperature the equivalence 

with Euclidean quantum field theory is lost even for the scalar field 

[8]. Finally we remark that a Nelson-type stochastic theory of spin-½ 

particles (coupled to an external electromagnetic field) employing an 

invariant evolution parameter was proposed recently [9]. 

1.2 Stochastic Quantization 

A possible way out of the Euclidean non-covariance of the stocha- 

stic field theory described in the preceding section would be the 

introduction of an invariant evolution parameter on which the field 

depends additionally. It appears that conventional quantum field theory 

is imbedded in the quantized version of the five-parameter field theory 

[10]. It can be expected that the application of Nelson's scheme to the 

five-parameter field will associate a stochastic field in Minkowski 

space (with invariant evolution parameter) with every wave functional 

of the Schr~dinger representation of the quantized field. 

Nowadays physicists prefer, for well-known reasons, to define 

quantum field theory in terms of path integrals rather than using the 

Schr6dinger formulation. Usually path integrals can be given a rigorous 

mathematical interpretation after the quantum field has been Wick- 

rotated into the Euclidean sector of complexified Minkowski space. 

There the path integral measure is a positive probabiiity distribution 

and hence the Euclidean quantum field is an ordinary stochastic process 

whose correlation functions are the Euclidean Green functions. Formally 

we have 

<F[~]> = fd[#] F[@] P[#] (1.18) 

P[#] = e-S[#]/fd[#] e -S[#] (1.19) 

where S[#] is the Euclidean action. (We have set ~ = I in (1.19) and 

will continue to do so.) If # is a free Bose field, S is a quadratic 

form. Hence in this case P[@] may be considered as an infinite- 
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dimensional generalization of the Boltzmann distribution, # playing the 

role of a "velocity". Now in nature thermal equilibrium is always the 

result of a stochastic relaxation process, and one may imagine that the 

"equilibrium distribution" (1.19) arises from such a process, taking 

place in a fictitious time t, in the limit t ÷ ~. The simplest equation 

describing the approach to this equilibrium is the Langevin equation 

8 ~S[~] + ~(x,t) (1 20) ~--~ ~(x,t) ~#(x,t) 

where q is a Gaussian white noise in 5 dimensions: 

<q (x,t) > = 0 (1.21) 
n 

<q(x,t)q(x',t')> = 2~ (~) (X-X')~(t-t') (1.22) 

etc. (cf. (I .2) - (I .4)). 

Equation (1.20) is the basis of the stochastic quantization scheme 

of Parisi and Wu [11]. Its intuition is closer to the original Langevin 

approach to Brownian motion (eq. (1.9) than to the theory of Einstein 

and Smoluchowski. But of course the analogy with Brownian motion is of 

a more formal nature here than in Nelson's scheme, where it may be 

taken literally. As to the interpretation of the fictitious time t, it 

has been pointed out already in [11] that it corresponds roughly to the 

computer time in Monte Carlo simulations. 

As in (1.7) one may introduce a probability distribution P[%,t] 

for the process #(x,t) defined by 

<F[#(x,t)]> = fd[~] F[~(x)] P[~,t] (1.23) 
q 

where F[#] is an arbitrary functional of ~. The Fokker-Planck equation 

(cf. (1.8)) for P[~,t] is 

dP fd4x[a 2 8 ~S = - -  + - - ] P  (1.24) 
dt ~#(x) 2 ~(x) ~(x) 

I 
-1S ^ e ~S 

2 e 2 (p ) = - HFp 

^ 

where HFp is the Fokker-Planck Hamiltonian 

(1 .25)  

^ 1 fd4x ~t ~ o (I 26) HFp = ~ >-- 
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R = ~ 1 6S (I .27) 
+ 2 ~(x) 

1 ^ 
Note that ~o = exp(- ~ S) is the ground state of HFp. This fact allows 

to prove formally the existence of the correct equilibrium limit in 
^ 

stochastic quantization: Assuming that the spectrum of HFp is discrete 

and has a "mass gap" (I I > O), we have 

I 

P[~,O] e ~ S[~] = ~ Cn ~n [~] (1.28) 
0 

with 

HFp ~n  = Xn ~n ' O = ~o < t I ( 1 . 2 9 )  

From (1.25) we then conclude 

-21 t t~ -S[#] 
P[#,t] = c n e n ~n[%]~o[#] ~ Co ~[~]= Co e (1.30) 

0 

Thus the formal limit is proportional to (1.19) as desired. 

Notwithstanding the fact that the Nelson and Parisi-Wu methods 

aim at different aspects of (what is hoped to be) the same theory, one 

may formally employ the Nelson scheme also to give directly the 

relaxation processes of Parisi and Wu. One simply has to start from 

the classical action 

SFp[0(x,t) ] = fdtd4x[ ~2 _ ( ~ S )  + ] (1.31) 
6#(x,t) 4 ~#(x,t) 2 

whose quantum Hamiltonian is HFp" The Wick-rotated (with respect to t) 

version of SFp appears in the generating functional for the correla- 

tions of the process ~(x,t) defined by (1.20) [12]. Exponentiating a 

functional determinant that appears in the functional integral defining 

the generating functional by introducing Grassmann variables and 

Berezin integration, the total action in the generating functional be- 

comes supersymmetric [12,13]. The origin of this "hidden" supersymmetry 

can be read off directly from (1.20): This equation may be interpreted 

as defining a transformation from the field #(x,t) to the Gaussian 

field n(x,t), i.e. a so-called Nicolai mapping [14]. The existence of 

such a mapping is characteristic for supersymmetric theories. Note that 

the supersymmetry encountered here is not of the relativistic type, but 

is generated by "square roots" of the generator of translations in the 

fictitious time t. 

Why should one replace Euclidean field theory by the seemingly 
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more complicated framework embodied in (1.20)? At least three reasons 

can be given: 

(i) Stochastic quantization does not assume a Hamiltonian or even 

Lagrangian formulation of the classical theory, but starts 

directly from the classical equations of motion (this is why we 

called it "unpretentious" in the introduction). 

(ii) A new invariant and non-perturbative regularization scheme [15] 

is provided by replacing the 2-point correlation function by 

> = 26AB ~A(t-t') (I 32) <hA(t) ~B (t') n 

where ~ is a smooth function that tends to ~(t-t') for A + ~. 
A 

(Unfortunately, although stochastic regularization respects all 

the global and local symmetries of the theory, the conserved 

currents and Ward identities differ from the standard ones by 

non-local terms.) 

(iii) No gauge-fixing and no associated Faddeev-Popov ghosts are needed 

in the stochastic quantization of gauge fields. This was the 

main motivation of the initial papers on the Parisi-Wu method. 

For the sake of fairness it has to be stated that all these advantages 

are of ~ conceptual nature and they do not necessarily imply that 

practical calculations become easier in stochastic quantization. We 

conclude this general discussion by mentioning that there is a direct 

relationship between stochastic quantization and two other interesting 

new approaches to field theory. One is the functional formulation using 

the Gibbs average of De Alfaro, Fubini and Furlan [16], where also a 

fifth parameter is introduced. It was shown to be a consequence of 

stochastic quantization by Gozzi [17]. On the other hand stochastic 

quantization may be considered as arising from the microcanonical 

ensemble in field theory [18]. 

Finally we treat as a concrete example the free Maxwell field Aa. 

In this case the Langevin equation reads 

aAa(k,t) 
= - k2Tab A b + ~a(k,t) (1.33) 

~t 

kak b 
- (1.34) 

Tab ~ 6ab k2 

The only non-vanishing correlation of the white noise n is 

<na(k,t)nb(k',t')>n = 2(2~)~ab ~ ~ (k+k') ~ (t-t') (1.35) 
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The solution of (2.34) 

t 
Aa(k,t) = / Hab(k,t-t')qb(k,t')dt' 

O 

subject to the initial condition Aa(t=O) = O is 

(I .36) 

where the heat kernel Hab is given by 

H(k,t) = e -tk2T = T e -k2t + L (1.37) 

kak b 
Lab := k 2 (1.38) 

The 2-point correlation function, or stochastic propagator, may be 

calculated from (1.37) using the semi-group property 

H(k,t)H(k,t') = H(k,t+t') (1.39) 

and (1.36): 

Dab(k,t;k',t') := <Aa(k,t)Ab(k',t')> 

From this we obtain the propagator 

min(t,t') 

= 2(2~)4~(~) (k+k')/d~Hab(k,t+t,-2~) . 
o 

(1.4o) 

<Aa(k)Ab(k')> = lim <Aa(k,t)Ab(k',t)> = 
t+~ n 

= (2~)46 (~) (k+k') (_~I Tab + ~2Lab) (1.41) 
k 2 

The divergence linear in t (which has dimension (length) 2) is due to 

the random walk of the longitudinal part of A implied by (1.34). Note 

that it drops out of gauge-invariant expectation values, e.g. 

<Fab(X)Fcd(X')>, which are obviously reproduced by stochastic quantiza- 

tion in the correct way. In the non-abelian case the random walk of LA 

effectively restores unitarity, at least this is what is indicated by 

the results for gauge-invariant quantities in perturbation theory [19]. 

Note that although we have not fixed the gauge in (1.34), the in- 

variant finite part of the propagator (1.42) appears in the Landau 

gauge. 
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II. Linearized Gravity 

2.1 Classical Euclidean Theory 

We start from the Einstein-Hilbert action in Euclidean (more 

precisely: Riemannian) space-time, 

I 
fd4x /g R[gab] (2.1) SEH[gab] = 2< 

8~G < = " (2.2) 
C 3 

where R is the curvature scalar of the positive-definite metric gab(X). 

Expanding the metric around flat space-time, 

gab = ~ab + 2 /~< Oab (2.3) 

one obtains in lowest order the quadratic action 

(o) I /d4x ~ab (2.4) SEH[Oab] = 2 Vabcd Ocd 

describing a helicity-2 field with gauge invariance 

Oab + Oab + ~aAb + ~bAa (2.5) 

where A a corresponds to an infinitesimal coordinate transformation. 

The operator 

Vabcd = k2(11abcd - ~ab~cd ) + (kakb6cd + ~abkckd ) - 

I 
- ~(kakc~bd + kakd~bc + kbkc~ad + kbkaScd ) (2.6) 

with 

llabcd = ½(6ac6bd  + 6ad6bc ) (2 .7)  

is not positive. It is not even bounded from below, as may be seen 

upon the introduction of a complete set of spin projection operators 

[20] p2, pl, pO, pO, obeying 

pA pB = ~AB pB , [ pA = I (2.8) 

(II denoting the unit operator on the space of symmetric tensor fields 

with components (2.7)). In terms of these, 
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V = k2(p 2 - 2P °') (2.9) 

Instead of defining the pA explicitly we write down the generic 

elements ~(A) of the subspaces onto which they project: ~(a) has 

(massive) spin 2, ~(I) and $(o) are pure gauge modes, 

~(1) = k T A T 
ab a Ab + kb a 2.10) 

~(o) = k a k b A ab 
2.11) 

(A~ denoting a transversal vector field), and 

, kakb) 

~ ) = (6ab k 2 A 
2.12) 

comprises the conformal degrees of freedom. The latter make the action 

"bottomless", just as in the full theory. This fact is well-known from 

the difficulties it presents to the path integral approach to 

Euclidean quantum gravity [21,22]. 

2.2 Standard Quantization 

When formulating linearized quantum gravity in Euclidean space- 

time one has to bear in mind that due to the difficulties mentioned at 

the end of the last paragraph it is at least not more rlgorously 

defined there than in Minkowski space. One should therefore consider 

the results stated below as a mere transcription of those obtained in 

Minkowski space, where the quantization of the ¢ field presents no 

difficulties at the formal level. Thus e.g. reflection positivity of 

gauge-invariant observables is automatically ensured. 

The standard procedure to eliminate the zero modes of V is, as in 

any gauge theory, to impose a gauge condition. We shall consider here 

the most general linear, covariant and local condition 

C (~) a ~ ~c~ac - l~a~cc = 0 , ~ # I , (2.13) 

which in the full theory corresponds to 

(gl gab), b = 0 (2.14) 

and yields in the case I = I/2 the harmonic coordinate condition 
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[] x a = 0 (2.15) 
g 

(Dg denoting the Laplace-Beltrami operator of the metric gab ) . The 

usual way to implement the gauge condition is to add a gauge fixing 

term 

[(~,~) = -I C(~) C(~) (2.16) 
gf a a 

to the classical Lagrangian, thus defining a "quantum" action 

S!O) = S!O) + S(O). 
U ~M gl 

(2.17) 

We have left out the ghost part of $6 °) on the right hand side of 

(2.17), since in the non-interacting theory considered here the ghost 

fields decouDle from 9. The general form of S (°) is Q 

SQ °) = ~2 /d4x ~ V(l'~) ~ (2.18) 

with V (X'u) invertible. Thus there exists a propagator K (X'u) = 

= [V~X'~)] -I"" which in momentum space is given by 

K(X,~) = 1 2~-1 kakb6cd + ~abkckd + 

abcd 2k2(~ac6bd + ~ad~bc - ~ab~cd ) ÷ 2~-2 k 4 

+ (~-I) I (kakc~bd + kakd6b c + kbkc6a d + kbkd6ac) + 
2k 4 

I-3~+8~-4X2-4X2~-1 kakbkckd 
+ (2.19) 

(~-I) 2 k 4 

The gauge-invariant part of (2.19), 

K(I/2,1) I 
2k2(~ac~bd + ~ad~bc 6ab~cd) C2.20) 

will be referred to as the propagator in the "Feynman gauge", whereas 

the parameter choice X = O, ~ = O with 

K(O,O) = l(p 2 I pO' 
k 2 - ~ ) (2.21) 

will be called "Landau gauge". The primary objects of physical interest, 

the "quantum averages" (corresponding to the expectation value Of the 

chronological product in Minkowski space.) of gauge-invariant obser- 

vables, may be calculated from any of the propagators. In the linear 

field theory considered here the only non-trivial gauge-invariant 

quantities are <Rabcd(X) Rijk£(X')> with 
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Rabcd = 4k[a ~b][c kd] 

the linearized Riemann tensor. 

(2,22) 

2.3 Parisi-Wu Quantization 

The tensorial version of the Langevin equation (1.20) reads in 

momentum space 

~-~ ~ab(k, t) = - Vabcd(k,t) + nab(k,t) (2.23) 

<nab(k,t)ncd(k',t')> = 2(2~)411abcd6(~) (k+k')~(t-t') (2.24) 
n 

Equation (2.23) may be solved by an integral equation (cf. (1.36)) in- 

volving the heat kernel 

H(k,t) = e -k2t p2 + e 2k2t pO' + pl + pO (2.25) 

Because of the exponentially growing factor of p0' in this expression 

the equal time correlation function <~(k,t)~(k',t)> diverges exponen- 

tially in the limit t + ~, which was supposed to give the graviton 

propagator. This divergence affects the physical degrees of freedom 

~(o') and is hence more serious than the linear divergence of the 

photon propagator (1.41). The latter divergence was a pure gauge term 

and linear in t, and has its counterpart in the linear divergences 

proportional to pl and pO that arise from the last two terms in (2.25). 

The reason for the new type of divergence encountered here is, of 

course, the fact that the "equilibrium distribution" exD(-~(°)1 is non- 
- -EH" 

normalizable (it still is a formal solution of the Fokker-Planck equa- 

tion associated with (2.23)). Thus the Parisi-Wu formalism breaks down 

in the case of the linearized Euclidean gravitational field exactly 

for the same reason as the (unmodified) path integral formalism, namely 

because of the indefiniteness of the Euclidean action. 

2.4 Stochastic Quantization in Physical Space-Time [23,24] 

It is possible to modify the Parisi-Wu prescription in such a way 

that it is directly applicable to fields in Minkowski space. As a 

matter of fact, from the physical point of view this version of stocha- 
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stic quantization is even more appealing than the Euclidean one, though 

the mathematics becomes more formal here. 

For a given field ~ in Minkowski space with action S, consider the 

stochastic process defined by the Langevin equation 

~A (x't) ~S[~] 
= i + nA(x,t ) (2.26) 

~t ~A(x,t ) 

<nA(x,t)nB(x',t')> = CAB6 (~)(x-x')~(t-t') (2.27) 

The correlations of n A read formally as in the Euclidean case, but with 

the symbol ~ab now representing the Minkowski metric. As a consequence 

the covariance matrix CAB is no longer positive definite (except for 

the scalar field). Therefore n A cannot in general be a real random 

field. It can be defined in the most straightforward manner by multi- 

plying some components of the corresponding Euclidean process by the 

factor i. Alternatively one can define n A as n A = iI/2~ A where ~A has 

a complex probability distribution given by the formal path integral 

exp(~ fdtd4X~ACA~B). The latter definition, though 
i 

measure D[~ A ] 

more formal, works also in curved space-time. 

The most conspicuous property of eq. (2.26) is that it defines a 

complex process ~A(x,t) even if the underlying classical field ~A(X) is 

real. As a complex term i6S/~ no longer represents a "friction force", 

an equilibrium limit does not exist in the ordinary sense. However, 

this limit does exist in the sense that the equal-time correlation 

functions converge for t ÷ ~ if interpreted as tempered distributions. 

In the case of the linearized gravitational field we have 

D(k,t;k' ,t) 
I pO ' 

<~(k,t)~(k',t)> n = i(2z)4~(~) (k+k')[l(p 2 - ~ ) - 
k 2 

l(e2ik2t p2 I -4ik2t pO' 
2i(P 1 + P°)t - k 2 - ~ e )] (2.28) 

We now recall the weak limit relations of distribution theory, 

lime ixt = 0 (2.29) 

lim P ! e ixt = ~(x) (2.30) 
x 

t+~ 

((2.29) is essentially the Riemann-Lebesgue lemma, "P" in (2.30) 

denotes the principal value). Making use of them we obtain 
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p2 I pO' 
lim D(k,t;k',t) = i(2~)4~ (~) (k+k') [-- i~2(pl + p0)] 
t÷~ k2+i 0 2 k2_i O 

(2.31) 

We thus obtain from stochastic quantization in Minkowski space a pro- 

pagator whose finite part coincides with a certain Minkowskian version 

of the propagator K (°'°) given by (2.21), the divergent part being a 

pure gauge. This is very similar to what we found in the example of 

the Maxwell field discussed at the end of Sec. 1.2. The reason for the 

appearance of the Landau gauge in both cases is the following. K (°,°) 

can be obtained as the invariant finite part of lim K(m 2) where K(m 2) 
m2÷O 

is the propagator of the massive extension of the theory defined by 
0 

adding - ~2 to the Lagrangian, i.e. 

K(m 2) = (V - m21) -I = -i 7dt e -im2t e iVt (2.32) 

0 

Since the Schr~dinger kernel exp(iVt) is the Minkowskian analog of the 

heat kernel H(t), the generalized versions of eqs. (1.40), (1.41) imply 

that taking the limit t ÷ ~ in (2.31) is identical with taking the 

limit m 2 ÷ 0 in (2.32) (note that m 2 is the variable conjugate to t 

via the Fourier transform). 

At this point we would like to make the following side remarks: 

(i) The "naive" massive extension V ÷ V - m21| considered above intro- 

duces a spin-O tachyon (associated with the projector pO'). The 

physical massive extension of the theory, describing pure massive 

- m 2 - , involving the spin 2, is defined by Vabcd (llabcd ~ab~cd ) 

so-called Fierz-Pauli mass term. However the latter theory does 

not yield gravity in the limit m 2 + O, a fact known as the van 

Dam-Veltman [25] mass discontinuity. 

(ii) For any linear field theory defined by a self-adjoint operator V 

stochastic quantization in Minkowski space yields (A = (a;x)) 

<~A(t)#B(t)> = -i_rdY(elTV)AB = (V iO) -I lim AB ~ KAB " (2.33) 
t÷~ n o 

As a consequence K(m 2) is analytic in the lower half complex m 2- 

plane. Thus, in particular, stochastic quantization implies a 

unique Feynman propagator in curved space-time. The associated 

definition of vacuum has been studied in a variety of examples 

[26]. 

(iii) Gauges different from the Landau gauge can be obtained by assum- 

ing an initial (complex) probability distribution for ~(t=0) 
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instead of setting @(t=O) = O. In the gravitational case only 

the (O,m)-gauges can be obtained from covariant Gaussian initial 

distributions. 

There is one unorthodox feature in the right hand side of (2.31), 

namely the unusual sign of the imaginary displacement of the pole in 

k 2 = 0 with residue pO,. This implies "noncausal" propagation, i.e. 

positive frequency conformal modes (2.12) are propagated by K (°,°) into 

the past rather than into the future. As the conformal modes are not 

pure gauge (though upon using the field equations they can be trans- 

formed into non-conformal type, thus enabling one to choose the well- 

known transverse-traceless gauge making the helicity-2 content of the 

theory manifest), the noncausal propagation affects also gauge- 

invariant expectation values. This is evident from the gauge-invariant 

part of the propagator, 

K (1/2'1) (k) - I 1 ~ac~bd ~ ~ad~bc 1 ~ab6cd ) I I 
abcd k2+iO(~ +2 -5 6 k2_i 0 ~ab~cd • 

(2.34) 

<F[@c,t]> ~ = /d[~ R] P[@R,t] F[~ R] (2.35) 

with P[~R,t] complex and obeying 

fd4x ~ ~ ~S = [ ~ R ( ~ R -  i ~-~R ) ] P[¢R,t] 

The equivalence between ~C 

(2.36) 

and @R is interesting because the complex 

Noncausal propagation implies that the propagator is not the expecta- 

tion value of the chronological product of fields in a pure quantum 

state. This is not uncommon in (Euclidean) quantum gravity, where 

finite temperature states occur [27]. The present context is quite 

different, however. 

We close this paragraph by mentioning that the equivalence of the 

modified stochastic quantization presented in this Section with Min- 

kowskian quantum field theory has been proven perturbatively for non- 

gauge theories [23]. A formal non-perturbative proof should be based 

on the Fokker-Planck equation (cf. eq. (1.30)). However, because of 

the complex nature of the process considered here there is not even a 

candidate for an equilibrium distribution. In this respect the follow- 

ing conjecture of Parisi [28] could be helpful: For every complex 

process ~c(X,t) defined by a Langevin equation (2.26) (with real proba- 

bility) there exists a real process #R(x,t) such that 
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Fokker-Planck equation (2.36) has the equilibrium solution PIeR ] 

exp(iS[#R]). Non-perturbative arguments for the equivalence between 

stochastic quantization and quantum field theory in Minkowski space 

not using the Fokker-Planck equation have been given in [23] and [29]. 

2.5 Stochastic Gau~e-Fixin@ [24] 

In 1981 Zwanziger [30] proposed to add an extra drift term to the 

right hand side of the Langevin equation that should act as a restoring 

force to the pure gauge degrees of freedom, resulting in the damping of 

the random walk of the latter and thus in a finite propagator. In order 

to preserve gauge invariance, the restoring force has to be tangential 

to the gauge orbits. 

Let us illustrate this with the example of the Euclidean Maxwell 

field. Here the restoring force has to be of the form kaA(k,t). One is 

thus led to define a stochastic field Ba(k,t) by the modified Langevin 

equation 

Ba = -k2TabBb + kaA(k't) + na (2.37) 

Note that B a is related to the process A a defined by (1.33) by the 

generalized (i.e. t-dependent) gauge transformation 

B a = A a + kaX(k,t) (2.38) 

= A (2.39) 

If we substitute the most general linear, covariant and local expression 

for A, 

A (e) = - e -I k b B b (~ > O) (2.40) 

in (2.37), the modified Langevin equation becomes 

Bab" = - W(e)ab Bb + na (2.41) 

where W (~) is now a symmetric invertible operator. The limit for t ÷ 

of the equal-time stochastic propagator of B yields just the inverse 

of this operator, 

A(~) ~ab + (e-likakbk-2 

ab = k2 ' (2.42) 

i.e. the propagator in the covariant a-gauge. 
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Generalizing now to linearized gravity in Minkowski space, the 

stochastic gauge-fixing force has the general form i(kaA b + kbAa). The 

modified Langevin equation 

Sab = iVabcd#cd + i(kaAb + kbAa) + nab (2.43) 

defines a process %ab related to ~ab by 

~ab = ~ab + i[kaXb(k't) + kbXa(k't)] (2.44) 

Xa = Aa " (2.45) 

The most general covariant linear stochastic gauge-fixing force is 

implied by 

(~'~'Y) (~) = ~-1[kb~ab +3 ka~cc +~ kakbkck-2~bc ] (2.46) A a 

(as we work in Minkowski space, there are no sign restrictions on e, 8, 

y). We have included the third, non-local, term on the r.h.s, of (2.46) 

because only so we will recover the ordinary covariant gauges from 

stochastic gauge-fixing. Eqs. (2.46) and (2.43) imply 

• = W (~'s'Y) + (2.47) ~ab i abcd #cd ~ab 

Observe that W is self-adjoint only if B = O. Thus the gauge-fixing 

force is in general not a variational derivative, but constitutes a 

nonholonomic constraint. If W is not self-adjoint, the stochastic pro- 

pagator involves H(k,t)HT(k',t'). Hence one cannot appeal to (1.39), 

as was done in the derivation of (1.40), and the calculation of the 

stochastic propagator for 8 ~ O is more complicated than indicated by 

(1.40). Therefore K (~'B'Y) is equal to (W (~'8'¥) + iO) -I only if 8 = O. 

The stochastic (e,8,y) gauges yield more general propagators than 

the ordinary (l,e) gauges defined by (2.17), (2.16). We can always 

identify a given (l,~) gauge with a certain stochastic gauge, but not 

vice versa. Specifically we have, if e # O, 

8 = 7_i(412 - 21 + 1 - ~) (2.48) 

2~(41 - ~ - I) (2.49) 
Y= I-I 

Consider now the case e = I, S = ¥ = O. Then eqs. (2.48), (2.49) have 
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two solutions for I: I = 0 and I = 1/2. This shows that KC1'°'°)is not 

well-defined. More precisely: If one takes the limit 8 = - ~ ÷ 0 of 

K(I,B,Y) then one obtains K (I/2'I)" - " all other approaches to B = Y = 0 ; t 

yield K (°,I) . Still, loosely speaking, the ordinary gauges (O,1) and 

(I/2,1) correspond to the same stochastic gauge. 

The reason is that the field transformation 

I 
A: ~ab ÷ (A~)ab = ~ab - 2 ~ab ~cc (2.50) 

(o) of (2.13) into C (I/2) is an involution and an which transforms C a a ' 

isometry with respect to the metric 11abcd in the space of symmetric 

tensor fields: 

A = A -1 A T (2.51) 

Since the covariance matrix of nab is proportional to 11abcd, An has 

the same correlations as ~. Therefore one obtains the same stochastic 

quantization prescription if one starts from the Langevin equation 

~S[,(~) ] 
= i ....... + ~ (2.52) 

if ~ = A~. Note that this is not the case if ~ab = ~ab - 16ab~cc with 

# I/2 (if I ~ 1/4, these transformations are still isometries, but 

no longer involutory). We have thus touched the problem of the defini- 

tion of the "natural" field variable, which will be pursued further in 

the next Section. 

III. Nonlinear Stochastic Gravity 

3.1Lan@evin Equation 

In this section we consider the full gravitational field. We want 

to promote the classical metric gab(X) to a stochastic process gab(X,t). 

There appears to be a unique Langevin equation generalizing the Parisi- 

Wu ansatz to this case. Our guiding principle will be manifest covari- 

ance wit h respect to field redefinitions (which may be considered as 

coordinate transformations in field configuration space). For concise- 

ness we shall adopt the notation of De Witt [31] and represent a 

general stochastic field by ~A(t), where the index A = (a,b,...;x) com- 

prises component indices as well as the space-time coordinate on which 

the field depends. By covariance, then, the general form of the 
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Langevin equation for #A must be 

C A = i G AB ~S[#] + qA(t ) (3.1) 

Here G AB is the inverse of a field metric tensor GAB that is required 

by covariance. (Note that the ~A have to be considered as coordinates 

in field configuration space; therefore C A is a vector, and so must be 
A 

n , while S is a scalar.)The process H is defined by the formal path 

integral 

I A B 
I fdtGABnA~B)//d[~]exD(-~/dtGAB ~ ~ ) (3.2) <F[n]> n = /d[n]F[n]exp(-~ _ , 

As the metric GAB will in general be indefinite, the integration con- 

tour for every n A in fd[~] should be rotated by 45 ° into the complex 

plane (i.e. ~ = ±il/2~" and the integration is over real ~; cf. the 

discussion in 2.4 following eq. (2.27)). Note that (3.2) implies 

<nA(t)nB(t')>n = 2GAB~(t-t ') only if GAB is independent of ~, and hence 

of n. For non-gravitational fields there exists a field coordinate 

system (defining the "natural field variables") for which GAB is indeed 

independent of ~. Note that the problem of finding these variables is 

essentially the same as the well-known problem of defining the correct 

path integral measure in standard quantum field theory. 

In the case of the gravitational field ~A = gab(X) the most general 

local field metric is known [31] to be 

GAB = C _[ (x)gbd(X')+gbc(X)gad(X')+Igab(X)gcd(X')]6(~) (x-x') 
2/~ gac 

(3.3) 

where I ~ - I/2 and C is an arbitrary constant. Substituting this into 

(3.1) and recalling that 

6SEH _ I ab = _ -/~g(R ab ~ g 

~gab 
R) (3.4) 

we obtain 

gab -iC(Rab 1+~ R) + (3.5) = 2 gab ~ab 

= -iC(-g) (I-I)/2 ~S 
~[ (_g) i/2gab]+ nab . (3.6) 

The choice of constants that yields the standard quantization of the 

linearized field is 



376 

C = I, I = O . (3.7) 

Adhering to this choice we obtain the following definition of the 

stochastic gravitational field: 

• I R) + (3.8) gab = -i(Rab - 2 gab nab 

> = N/d[n]F[g[n]]exp(-¼/d4xdt/~gaC[n]gbd[n]nabncd) (3.9) <F[g] 

The stochastic source nab is genuinely non-Gaussian in the case 

of the gravitational field. This was first noted in [32], where auxili- 

ary fields were introduced in terms of which the process becomes 

Gaussian. But in general, i.e. if also non-gravitational fields are 

present, an infinite hierarchy of such auxiliary fields will be 

necessary. This is true even in the simple case of a scalar particle 

moving in an external gravitational field. Let us consider this proto- 

type of non-Gaussian stochastic dynamics in some detail. We choose the 

action 

dx a dx b 
I /as (x) (3.1o) S[X(S)] = ~ gab ds ds 

which gives s the meaning of an affine parameter (proportional to 

proper time for timelike world lines) in the resulting geodesic equa- 

tion of motion. The action (3.10) may also be considered as defining a 

non-linear a-model in 0 +I dimensions. The covariant Langevin equation 

for the stochastic variable x(s,t) is 

~__ xa(s,t) = igab(x) ~S + na(s,t)= i D2x-----~a + H a (3.11) 
~t ~xb(s,t) ds 2 

D/ds denoting the absolute derivative. The path integral measure is 

I /dsdtgab(X[n])qaqb} (requiring again a rotation of the n d[q]exp -7{ 

integration contours into the complex plane). The only way of getting 

rid of the non-Gaussian character of ~ is by introducing redundant 

variables. The most attractive way of doing this appears to be the 

following: Imbed the curved space-time M 4 in an N-dimensional pseudo- 

Euclidean manifold M N such that the pseudo-Euclidean metric 6AB (A,B = 

= I,...,N) induces the metric gab in M 4. Consider a particle in M N 

whose coordinate xA(s) is confined to the 4-dimensional submanifold 

M 4 = {X e MN[Fi(X) = O, i = 1, .... N-4}. Its Lagrangian is 

I dX A dX B F i 
L = ~ 6AB ds ds + I i (X) (3.12) 
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where the I i are Lagrange multipliers. The Langevin equation associated 

with (3.12) is 

dxA(s, t) = i( d2xA 

dt dt 2 

Fi(X(s,t)) = O 

~AB ~F i) + nA 
+ I i ~X B 

(3.13) 

(3.14) 

<qA(s,t)qB(s',t')> = 2~ABs(s-s')6(t-t ') (3.15) 
q 

We are thus led to the stochastic quantization of constrained systems 

which was introduced recently [33]. It may prove useful also in the 

case of the gravitational field. 

3.2 Back@round Field Formalism 

Owing to the non-Gaussian probability measure appearing in the 

stochastic quantization rule (3.9) for the gravitational field, a 

consistent perturbation theory is complicated by the fact that the 

correlations themselves depend on the interaction. Splitting the 

stochastic metric gab(X,t) into a deterministic part a(o) and a 
=ab 

fluctuating part, 

= ~(o)(x,t) + 2/~ ~ab(X,t) (3.16) 
gab =ab 

the modified correlation will contribute already in first order (in 

< I/2)" perturbation theory. Therefore a perturbation theory based on the 

Langevin equation 

~ab = i~(°)Jac gg~)(_g(O) )-I/2 ~SEH[g (°) +2<I/24] 

~cd 

with 

<nab (x, t) qcd (x' 

+ nab (3.17) 

t')> = (-g(°))-112(q(°)~(°)+~(°)~(°) ~6 (~) / (X-X')6(t-t') 
' n -ac ~bd =bc ~ad ' 

(3.18)  

t÷~ cl. 
g(O) (x,t) (x) (3.19) 
ab ~ gab 

r 

cannot be expected to be equivalent to the standard quantum perturba- 
cl. 

tion theory around a classical metric gab " Nevertheless this, with 

g(°) (x,t) = , has so far been the only approximation accessible to ab 5ab 
explicit calculation, and we are going to discuss it in some detail. 
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Splitting the gravitational action into a free and an interacting 

part, 

SEH[~ + 2<I/2~] = S(°) [~] + s(int) [~] (3.20) 

we may write the Langevin equation (without gauge-fixing) in the form 

iV~ i 6s(int) 
- = + n (3.21) 

with V being given by (2.6). Its solution 

~S (int) 
~(t) = fH(t-T)[i 6~(T) + n(T)]dT (3.22) 

0 

may be expanded perturbatively into a series of tree diagrams: 

/ o 
~ = X + + .~ + + ... 

Here the cross represents n and the line the Schr~dinger kernel H. Note 

that every vertex carries a time T which is integrated over. Eq. (3.23) 

implies the Derturbative expansion of the stochastic average of products 

of ~ fields. This expansion involves the free two-point correlation 

function D(tl,t2) (see (2.28)), which will be represented graphically 

by a crossed line, ~ 2 "  For instance, the three-point function 

<~(Xl,tl)~(x2,t2)~(x3,t3)> n is given in lowest order by the following 

sum of "stochastic diagrams": 

+ ~ + ~ + ~  + ~ +  rotations . (3.24) 

It has been shown for non-gauge theories [34,23] that the sum of all 

stochastic diagrams with the same topology as a given Feynman diagram 

yields just this Feynman diagram in the limit t ÷ =. As we have ob- 

served already in (1.41), in the present case of a gauge theory all 

diagrams will actually diverge as t ÷ =. These divergencies will can- 

cel, however, in gauge-invariant quantities. 

For practical calculations the method of stochastic gauge-fixing 

is more convenient, as it yields a finite propagator. To generalize 

the method from the abelian case treated in 2.5 to the interacting 

theory, one has to take into account the non-abelian gauge transforma- 

tions of ~ induced by general coordinate transformations of the full 

metric g: 
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~ab = ~aXb + ~bXa + 2/~<(~ma~bXm + %mb~aXm + ×c~c~ab ) (3.25) 

- [/d4YXc(Y)Qc(y) ]~ab(X) (3.26) 

In (3.26) we have introduced the generators of gauge transformations 

Qc" According to Zwanziger's scheme [30] (see 2.5) we may add the 

i{/d4yA~'B'Y) [~(y,t)]Qc(y) } ~ a b ( X , t ) ' _  to the right hand "drift force" 

side of the Langevin equation (3.21) (in the non-abelian case this 

drift force is never derivable from a gauge-fixing action). The result- 

ing modified Langevin equation has the general structure 

(~,B,y) 
~ab = iW(~cd 8,Y) ~cd + iZab 

where Zab is of the form 

Zab(k,t) ~ /d~k , Zabcdij(k,k' 

6S (int) 
+ i + 

~ab nab 
(3.27) 

Therefore the gauge-fixing force introduces an effective interaction 

that has the same structure as ~S(1)/6~ab, where S (IJ is the first 

order part of S (int) . The effective interaction results in a new 3- 

vertex, which has to replace the old one in all stochastic diagrams. 

Graphically, 

+ (3.29) 

The explicit calculation of this new interaction has been carried out 

recently by Fukai and Okano [35] (for B = y = 0). Exploiting the hidden 

supersymmetry they were also able to sum over topologically equivalent 

stochastic diagrams and obtain new Feynman rules for ordinary diagrams: 

These also involve a new 3-vertex, but no Faddeev-Popov ghosts. (Inter- 

estingly, the existence of such an alternative set of Feynman rules 

for the Yang-Mills field has been argued recently by considerations 

independent from stochastic quantization [36].) In view of the general 

considerations made at the beginning of this section, the physical 

significance of this result is still unclear, however. 

In any discussion of perturbative quantum gravity there arises 

the question of the relevance of the non-renormalizability of this 

theory. Recently the view [37] was expressed that stochastic quantiza- 

tion is not applicable to non-renormalizable field theories if one 

wishes to include the radiative corrections and renormalize before 

taking the limit of infinite fictitious time. On the'other hand it was 

~cd(k',t)~ij (k-k',t) (3.28) 
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observed [38] that the consequence of stochastic quantization in non- 

renormalizabie theories is that an infinite number of stochastic 

sources has to be introduced. This may be considered just as a reflec- 

tion of the fact that an infinite number of parameters is needed to 

describe a non-renormalizable theory at the quantum level. 

3.3 Non-Perturbative Aspects 

The outstanding question that remains regarding the general topic 

of this Section is: What are the physical implications of the gravita- 

tional Langevin equation (3.8), (3.9) and what is its relation to 

other approaches to quantum gravity? Rather than attempting to answer 

this question we shall give in the following an outline of the present 

status of knowledge concerning the corresponding questions in the case 

of non-abelian gauge fields. This might give an idea of what can be 

hoped for in the case of stochastic gravity. 

We begin with a brief recapitualtion of the standard formalism 

used in the quantization of gauge theories, again adopting De Witt's 

conventions (cf. 3.1). The basic object of interest is the Schwinger 

average of an observable 0[~] formed from the gauge fields CA, 

<outlT(0[~]) fin> /d[~]d[c]d[~] e istOt[~'c'~] 0[~] (3.30) 

where c, c are the Faddeev-Popov ghost and anti-ghost fields and the 

total action consists of three parts: 

Sto t = Sci[¢] + Sgf[~] + Sghost[#,c,~] 

I -I C p C ~ 
Sgf = ~(~ )pa 

(3.31) 

(3.32 

Sghost = Cp FP [~] c a (3..33 

Here p, ~ are Lie algebra indices that include also the space-time 

argument x, ~p~ form a symmetric "matrix" (generalizing the gauge 

parameter), CP[~] are the gauge conditions and F p [#] is the linear 

operator 

F p [}] = (~---- cP[¢])Q A [¢] (3.34) 
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involving the generators QA d of gauge transformations (cf. (3.26)) 

defined by 

QA[ a ~%A = ~] × (3.35) 

The Faddeev-Popov ghosts were introduced by "exponentiating" the 

Faddeev-Popov determinant det F[~]: 

iS 
Sd[c]d[c] e ghost ~ det F[#] . (3.36) 

For a discussion of the stochastic quantization of gauge fields 

we shall return to Euclidean space-time and make the following 

specializations: 

A A p = (x) (3.37) a 

P + gfP yAd× Y (3 38) ~A DaXP ~ ~a × 

(-I) = -I 6 (3.39) 
p~ p~ 

C p = ~ A p (3.40) a a 

Equation (3.40) implies via (3.34) 

Sghost = /d4x ~a ~p Da c p . (3.41) 

Consider now the unconstrained Langevin equation 

~A~ 6Sci 
. . . . .  + ~P (3.42) 
~t 5A a pa 

The associated Fokker-Planck equation (1.24) has the equilibrium solu 

-Scl[A] 
tion P[A] = e , which is not normalizable due to the infinite 

volume of every gauge orbit which is integrated over in /d[A]P[A]. 

Therefore, at the level of the probability distributions, equivalence 

of stochastic quantization with standard quantization can hold only 

with stochastic gauge-fixing. According to Zwanziger's argument (see 

Secs. 2.5, 3.2) the gauge-fixing force has to be of the form 

(DaA(X,A))P, hence the modified Langevin equation and the associated 

Fokker-Planck equation read 
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~AP a ~Scl 
8t = ~A + (DaA(X'A))P + npa (3.43) 

pa 

P[A,t] = fd4x ~ [ 6  6S 
6APa(x) 6Apa(X ) + ~Apa(X ) (DaA)P]P[A,t] -= - LP . 

(3.44) 

The Fokker-Planck equation has an equilibrium solution P defined by 
0 

P : LP = 0 (3.45) 
o 0 

which can indeed be made to coincide with the "Faddeev-Popov" distri- 

bution" 

PFP = N /d[c] d[~] e -StOt (3.46) 

if A p is chosen to be 

-I N /d[c]d[~]cP(x) j/d4Y~aCS(y) ~St°t -St°t AP(x'A) = PFP e (3.47) 6AOa(y) 
[39]. But so far only formal arguments [40] have been given that the 

equilibrium is indeed reached, i.e. that 

lim P[A,t] = P [A] (3.48 
o 

t+~ 

Of course Po = PFP can hold only if PFP is positive. But it is 

known that this is not true because of the notorious Gribov ambiguity 

[41]. Let us define the "Gribov region" ~ in the gauge field configura- 

tion space by the property that PFP > O there (its boundary is called 

the Gribov horizon). Then numerical calculations in a finite-dimen- 

sional lattice approximation indicate the following [3]: If the 

stochastic process A(t) with gauge-fixing force starts in ~, then it 

remains there for all t. Maybe this is an instance where something new 

can be learned from stochastic quantization, namely that the domain of 

integration in the path integral should be confined to the Gribov 

region. 

The two main obstacles to generalizing these results to the gravi- 

tational field are, of course, the indefiniteness of the action and 

the non-Gaussian character of the stochastic source. At present there 

seem to exist three possible assessments of this situation: (i) The 

problems of stochastic gravity are purely mathematical and will finally 
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be overcome. (ii) Quantum gravity (whatever it means) cannot be con- 

structed in the stochastic manner. (iii) Einstein's theory is not the 

correct starting point for quantization. Only the future will tell 

which variant is the correct one. 
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FEYNMAN'S CHECKERBOARD AND OTHER GAMES 

T. JACOBSON 

Department of Physics 
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Abstract 

Feynman's checkerboard path integral for the retarded Dirac propaga- 

tor in i+i dimensions is derived and extensions to 3+1 dimensions are 

developed. Methods for obtaining the Feynman propagator (rather than 

the retarded propagator) are briefly discussed. 

i. Feynman's Checkerboard 

Feynman [i] gave a simple path integral representation for the 

retarded Dirac propagator in i+i dimensions. Here is one way to 

derive it: the Dirac equation ist ~ = (~.p+~m)~ in the Chiral rep- 

1 0 0 -i 
resentation ~ = (0 -i )' ~ = (-i 0 )' ~ = (_) reads 

(Dt+Sx)R = imL 
(1) 

(St-Sx)L = imR . 

Feynman's path integral results from a particular finite differencing 

of (i) on a square spacetime lattice with mesh size E: 

R(n,m) = R(n-l,m-l) + iEm L(n-l,i+l) (2) 

L(n,m) = L(n-l,m+l) + iEm L(n-l,m-l) 

where the integers n,m label the time and space coordinates of the 

lattice sites. These equations (2) may be interpreted as saying that 

the amplitude for a particle to be at (n,m) moving toward the right 

is equal to the amplitude that it was at (n-l,m-l) moving toward the 

right plus iEm times the amplitude that it was at (m-l,m+l) moving 

toward the left. 

That one can in this manner interpret the components R,L of the wave 

function ~ as amplitudes for particular states of motion is related 

to the fact that the conserved probability current (~+~, ~+~) in the 

chiral representation reads IRI2(I,I)+ILI2(I,-I). To put it another 

the state vectors (~) and (~) are eigenvectors of the way, velocity 

operator ~ with eigenvalues +i and -i, corresponding to motion at the 
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speed of light to the right and left respectively. 

Iterating the finite difference equations (2) R(n,m) and L(n,m) may be 

expressed as a sum over paths leading to (n,m), where a path with B 

bends is given an amplitude (i(m) B. The retarded propagator K(n,m) is 

a 2x2 matrix giving the amplitude ~f+K(n,m)~ i that a state ~i 

initially localized at (0,0) would evolve to a state ~f at (n,m). 

Thus K(n,m) can be expressed as 

K , (n,m) = ~ # , (n,m;B) (iEm) B (3) 
XX B XX 

where 4 , (n,m;B) is the number of paths with B bends that leaves 

(0,0) in the direction x'(right or left) and arrives at (n,m) in the 

direction X" 

The convergence of (3) to the exact continuum propagator in the limit 

¢ - 0 is not a priori guaranteed; however, in [2] (3) is evaluated (in 

the limit ( - 0) and this convergence is demonstrated. 

In this article we shall address the questions 

i) can a path integral generalizing (3) be found for the Dirac 

propagator in 3+1 dimensions? and 

2) is there some modification of (3) that will yield the Feynman 

propagator in place of the retarded (or advanced) propagator? 

2. 3+1 dimensions 

In 3+1 dimensions the Dlrac equation in the chiral representation 

O 0 0 -i R 

5 = (O-o)' ~ = (-i 0 ) ' ~ = (L) reads 
N 

(St + ~-~)R = imL 

(St o-v)L = imR 

(4) 

Let us begin by treating themassless case, so thatR andL are de- 

coupled. The effect of the mass term is to introduce chirality 

switches, as in the i+i dimensional case, although now chirality no 

longer determines velocity. Indeed, the velocity can take on any 

direction according to the spin vector. We shall now show how spin 

i.e., the current is parallel (anti-parallel) to the spin polarization 

vector for a right (left) chirality spinor. 

where now R,L are two-component spinors corresponding no right and 

left chiralities. The conservea current is given by 

J~ = J~R + J~L = (R+R' R+~R) + (~ L'-L+~L) ' (5) 
N 
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transition amplitudes can be used to determine the amplitude for space- 

time translations in a path integral for the propagator of (4). 

Rather than finite differencing (4) on a hypercubical spacetime 

lattice, we prefer to maintain spherical symmetry. To this end we 

first rewrite (4) (with m=0) in an explicitly spherically symmetric 

manner : 

{~dn/4~)(l+~-a)(~ +3r-l~-~)] R(t,x) = 0 (6) 

^ 

where ( is arbitrary and the integral is over the vectors n on the 
N 

unit 2-sphere. (6) is easily verified using ~dQ/4~ = i, 

2dQ~ = 0, ~[dQ(4~)ninJ=(i/3) 6 ij. (That the correct factor is i/3 is 

seen by tracing both sides.) Now we finite difference the directional 

derivatives 

((~t + 3 (-I~'z) R(t't ) 

= R(t,x) - R(t-(, ~ - 3{-l(n)_ + 0(( 2 ) (7) 

and insert (7) in (6) to obtain 

R(t,x) = ~(dn/4~)(l+(~-t)R(t-(,~-3(-l(n)_ + 0(( 2 ) (8) 

As in the i+i dimensional ease, (8) can be iterated to obtain a 

path integral approximation for the propagator - but the amplitude for 

a path is now the ordered product of "propagation matrices" (l+(n.a), 

one for each step. We have left ~ arbitrary until now to illustrate 

the following important point: the convergence of this iteration to 

the continuum propagator will obtain only for some values of (. For 

instance, if ( > 3 the exact propagator is clearly not obtained since 

its domain of dependence includes the past light cone whereas 

according to (8) R(t,~) receives contributions at each step only from 
^ 

the points (t-(, x-3[-l(~) which fall inside the light cone. In fact 

[3], as ( ~ 0 the iteration diverges for ( > 3. For [ = 3 the con- 

tributions to R(t,x) come from points on the past light cone, hence 

it might be thought that this case would converge to the continuum 

propagator, but this is not so. It turns out [3] that convergence 

requires ( ~ ~, i.e., the domain of dependence of the finite dif- 

ference equations must be larger than the continuum domain. (The 

same phenomenon arises when hyperbolic equations are finite differenced 

on a lattice [4], where its origin is geometrically evident.) 

The choice (=i is convergent and leads to a particularly elegant 

path integral which exhibits most clearly the dual role of spin in 

determining transition amplitudes and propagation directions. With 
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~=i, the propagation matrix associated with a step in direction n is 

l+n-o, which is proportional to the projection operator(i/2) (l+n.~)=ll + 

with ~ a normalized two-component spinor (l+l = i) determined up to a 

phase by the condition n = ~+0~. With this notation, (8) may be 

written 

R(t,~) = ~(dn/2~)~x+R(t-¢,~-3(n) + 0(4 2 ) (9 

Neglecting the O(4 2 ) contribution, (9) states that the contribu- 

tion of the spinor amplitude R(t-(,x-3(n) to the amplitude at (t,x) is 

obtained by projecting out that part of the former that is parallel to 

X in spin space. In effect, the amplitude for the spacetime transla- 

tion is determined by the amplitude for the spin transition. 

Iterating (9) we obtain an approximation to the retarded propa- 

gator in the form 
N N + + + 

K~(t ,x)  = ~=~rinl(dni/2=)XN ~+ - - -  ~ , 2 X 2 ~ I X l  6(x-mE m X.~ , . )  ( i0) 
N ~ i=l 1 N 1 

where N--t/(. In [3] it is shown by explicit evaluation of (i0) that 

in the limit N - ~, ( ~ 0 K ~ converges to the continuum propagator. 

Note that the ordered product of propagation matrices li~+ ~ can now be 
+ 

viewed as a product of scalar products li+lli , each giving the 

amplitude for a transition from spin hi to li+l and, concomitantly, 
+ + 

for the step sequence ~i~l i - li+l~li+ I. 

The propagator for left handed spinors is obtained by reversing 
+ 

the sign of li~ i in the @-function of (i0) . When the mass is non- 

zero, there is an additional possibility of switching chirality at 

each step, and the path integral for this case can be written [3 ] as 

N N + + + + 

KXX, = ~i=~l(d~i/2~) Xi=il~ ~NXN "'" Xl~l(i~m)B6(x-3(~ i=l ~ XiXi°~i)~ (ii) 

where Xi = il, the sequence of chiralities begins with X' and ends 

with ~, and B is the number of chirality switches, i.e., 

N 

B = ~ IXi+l-×il/2 
i=l 

3. Null steps? 

The steps of the path integrals (i0) and (ll) are spacelike 4- 

vectors of the form E(1,3n), which followed from the representation (8) 

for the Dirac equation with ~=i. Is it possible to modify the con- 

struction so that the steps would be null vectors? It was already 
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remarked that although choosing ~ = 3 in (8) corresponds to null steps, 

the iteration yielding a path integral does not converge in this case 

[3]. Another idea would be to choose ~ = i, but to divide (6) by 3 

and rewrite it as 

i 
(1/3 + ~-~)(St + n 5i)} R(t,~) = 0 ~ ~d~/4~ 

which after finite differencing yields 

R(t,x) = ~(dn/4~)(i/3+~.o)R(t-c,x-~) + 0(~ 2) (12) 

The iteration of (12) converges in the limit N - ~, but because of 

the 1/3 it converges to zero which, while it is a solution to the 

Weyl equation, is clearly not the propagator! 

I have found only one way to get by with null steps, and that 

is to include steps backward in time. An account of that construction 

(for the massless case) will now be given. The result will be a path 

integral built with null steps of the form ((~l,n), in which the 

propagation matrix for a step is (as before) IX+? now with a weight 

2/3 for steps forward and 1/3 for steps backward in time. One sums 

over the two time directions at each step as well as integrating over 

n; in addition, one sums over the total number of steps (which is no 

longer fixed by the time t). 

-i 
The propagator we seek is the integral kernel of (St + o-v + 13) , 

with ~ an infinitesimal positive number. We shall make use of the 

identity 

(~t+~-V+~) -I = lim E ~ exp[-N~(~t+~-V+~) ] (13) 
~-0 N=0 

which is verified by summing the geometric series and then expanding 

the exponential. Now the exponential in (13) is the evolution 

operator of the Weyl equation with a "fifth parameter": 

5s~ = -(5 t + o.v+~)~ . (14) 

We shall derive a path integral representation for this evolution 

operator and then sum over N as in (13) to arrive at the propagator. 

In analogy with the method of Section 2 we first rewrite (14) as 

{ ~ ~(dQ/2~) (I+T/3) (l+n-a) (i/3~ +TSe+n-v) ] @(s,t,x) = 0 , (15) 
T =±l . . . .  ~ ~ 

with ~ suppressed for notational simplicity. T(=±I) has been 

introduced so that we can divide through by 3 while preserving the 

"normalization" 
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~(i/2) S(dn/4~) (I+T/3) (l+n-o) = 1 
T=±I ~ N 

(compare with (12) and the comment following (12)). There are several 

ways to write (15) (e.g. replace (I+T/3) (l+n-o) by (l+T/3+n-~)) but 
N 

(15) has the virtue that the propagation matrix is still proportional 

to a projection l~+. 

Introducing the finite difference approximation 

E(i/3~s + T~ t + n-v)~(s,t,x) 

= ~(s,t,x) - ~(S-E/3,t-TE,X-nE) + 0(4 2 ) 

into (15) yields 

~(s,t,x) = ~+ S(dn/2~)G(~,n)~(S-E/3,t-~E,X-nE) + O(E 2) (16) 

with 

G(T,n) : = (I+T/3) (l+n-o)/4 

~2/3~ + = , r = + 1 (17) 

[i/3~I + = - 1 T 

Iterating (16) we approximate the kernel ~(t,x) of 

exp[-(N~/3) (~t+o.v) ] as a path integral 

N 

~(t,x) = ~ S ~ (dQi/2~)G(TN,~)---G(Tl,nl)6((t,x)-(~(Ti,ni)). 
Ti=±l i=l i 

(].8). 

Finally, imitating (13) we conjecture that the exact retarded 

propagator K(t,x) is given by 

? 
K(t,x) = lim((/3) ~F~$(t,x) , (19) 

E--0 N =0 ~ 

which is a path integral representation as described in the second 

paragraph of this section. The proof of this conjecture is given in 

the appendix. 

4. Feynman propagator 

The retarded propagator is just exp(-iHt) with H the one-particle 

Dirac Hamiltonian, and it propagates both positive and negative energy 

states forward in time. In the correct, many-particle theory positive 

energy states are propagated forward in time while negative energy 

states are propagated backward. That is, the appropriate propagator 

is 
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K F = K (+) _ K(-) ret adv 

= (2g) -4 Sd4peipX(~-m+i~) -I (20) 

where K(+)ret (Kadv)(-) is the positive (negative) frequency part of the 

retarded (advanced) propagator. Can the checkerboard path integral 

and its generalizations be modified so as to yield the Feynman 

propagator (20)? 

One's first thought is to try again the fifth parameter representa 

tion, 

(~-m+i~)-i : -iS0ds exp[i(~-m+i~)s] (21) 

in analogy with eq'n (13). This is unsuitable however because in 

Minkowski space the spatial y-matrices are anti-Hermitian, hence 

@ = y~ is not Hermitian and the integral in (21)does not converge. 

A possible solution is to work in Euclidean space where all the y's 

are Hermitian and then to analytically continue back to Minkowski 

space. This is the approach taken in reference [5]. 

Working exclusively in Minkowski space, the only way I have 

managed to arrive at the Feynman propagator with the sort of path 

integral under consideration is simply to project out the positive 

and negative frequency parts of Kre t and Kad v respectively via the 

formulas 

.,(t) 't' = (i/2~) S0dt ' (t-t ) ~retk ; '+i¢) -IKret (t' 

0 _i K . 
K(-)adv(t) = (-i/2~) S dt' (t-t'-i() adv(t') 

In terms of the path integral for, say, K(+) (t x~ this amounts to 
ret" '~'' -i 

"weighting" paths with time lapse t' by(i/2~) (t-t'+i¢) instead of 

6(t-t'). In this way one can piece together K F from the path 

integrals given in the previous sections. This solution is not very 

appealing however since the paths no longer connect two fixed points 

in spacetime. 

Appendix: Evaluation of the path integral in (19). 

The 6-function in (18) is interpreted to be a highly peaked 

Gaussian of width ~i/2, given as a Fourier integral by 

6~((t,x)-~(Ti,ni)) = 
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i(~t+~.~)-~(~2+k2)e-i~(~Jr i -i~('~i d~d3k (IA) 
4 e e 

(2~) 

At the end of all other computations we take the limit ~ , 0. 

After substituting (IA) in (18), the integral over d~d3k can be 

interchanged with the sum/integral over T.,n to obtain 

K~(t,x) = S d~d3k i(~t+k'x)-~(~02+k2) AN(~0'k) (2A) 
. (2~) 4 e N N E -- 

with 

A (~,k): = ~ [(dn/2~)G(T,n)e -i(~+k'n)~ ~ ( 

E ~ T=±I ~ 

= [cos~E+ (i/3) sin~0( ] [ j 0 (k () -ij i (kE) ~-i] 

= l-(iE/3)(0j+k-~) + 0(~2E2,k2E 21 (3A) 

where k: = (k-k) I/2, {: = k/k, and j0,j I are spherical Bessel functions. 

Now we may interchange the integral in (2A) with the sum in (19) 

provided ~NAN(~0, k) converges uniformly in ~,k. ~ A (0o,k) is Hermitian, 

and the squared moduli of its two eigenvalues are given by 

i)~_I 2 [COS20E + (1/91 , 2 jo 2 2(k() ] = sin ~0(][ (k() +j 1 

which are less than unity (cf. [3], Section 2.3) except at k=0, 

~0 : n~/E,n = integer, where IX+I = i. ~AN(~o,k) thus converges except 

at k=0, ~=n~/E, but it does not converge uniformly in ~0,k. The situa- 

tion is changed however when we recall the (suppressed) infinitesimal 
-i 

positive ~ that was used to define the inverse (~t+~-v+~) in (131. 

If ~ is maintained throughout the calculation we obtain (I-~](/3)G(T,n) 

in place of G(T,n ) in (17) and hence (I-~E/3)A (~0, k) in place of 

A (~0,k) in (3A). Now the eigenvalues of (I-~¢/3)A (~0,k) have moduli 

everywhere less than unity, and furthermore ~(l-q(/3)AE(~0,k)_ converges 

uniformly in ~0,k, so we may interchange the sum and integral to obtain 

tThe definitions of uniform convergence and relevant theorems are 

given in [6]. The theorems concerning interchange of series or limits 

with integrals apply to integrals with finite range of integration, and 

must be supplemented with arguments invoking the large ~,k behavior of 

exp[-~(J+k 21 ]. 
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6im(E/3) ~ ~(t,x) 
E'0 N=0 N 

= 6im S d~d3k ei(°~t+k'x)-~(~°2+k2)~ (E/3) [I_(I_~E/3)AE(CO, k ) ]-l 

E--0 (2~) 4 
(4A) 

The limit can be interchanged with the integral in (4A) provided 

the integrand converges to its limit uniformly in co, k, t but this is 

not the case since E appears in A (c0,k) always in the combinations 
E 

cOE,kE. On any compact range of cO, k however, the integrand converges 
N 

uniformly, so let us break the integral into two terms, one over a 

very large but compact range and one over the remainder. Due to the 

exponential damping factor exp[-~(co2+k 2) ], the remainder can be made 

as small as we wish by taking the compact range large enough. Inter- 

changing the limit with the integral is thus justified. 

Li m (E/3) [I_(I_~E/3)AE(cO,k ) ]-l = [i(~+k.~)+~]-i • Now 

so we have 
¢o 

6im Lim (E/3) ~ ~(t,x) 
$-0 E-'O N=O 

d~d3k i ( cot+k - x) 
= ~ ~ e ~ ~ [i(oj+K-o)+~] - I -  , 

-i 
which is indeed the kernel of (St+~-~+~) , i.e., the exact retarded 

propagator. 
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